Predictive Informatics Monitoring in the Neonatal Intensive Care Unit
新生儿重症监护病房的预测信息学监测
基本信息
- 批准号:9762954
- 负责人:
- 金额:$ 66.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-10 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAgeAlgorithmsAutonomic nervous systemAwardBreathingCaringCatastrophic IllnessCentral Sleep ApneaCharacteristicsChestClinicalClinical DataCollaborationsDataData SetDatabasesDeath RateDecelerationDelivery RoomsDevelopmentDiagnosisEarly DiagnosisEarly InterventionElectrocardiogramEnvironmentEventFunctional disorderFundingGestational AgeGoalsHealthHeart RateHemorrhageHospitalizationHospitalsInfantInfectionInflammatoryInformaticsIntubationLeadLifeModelingMonitorNational Institute of Child Health and Human DevelopmentNecrotizing EnterocolitisNeonatalNeonatal Intensive Care UnitsNursesOutcomeOxygen saturation measurementPatient CarePatientsPatternPeriodicityPhenotypePhysiologic MonitoringPhysiologic pulsePhysiologicalPhysiologyPopulationPositioning AttributePremature InfantProstaglandinsPulse OximetryRandomized Clinical TrialsReportingResearchResearch DesignResourcesRiskSavingsSepsisSignal TransductionSiteSourceStatistical Data InterpretationStreamSystemTestingTimeUniversitiesVentilatorVery Low Birth Weight InfantVirginiaWashingtonWorkautomated analysisbaseclinical developmentclinically relevantcytokineexperienceimprovedimproved outcomelarge-scale databasemathematical analysismortalitynovelprediction algorithmpredictive toolsprematureprospectiverandomized trialrespiratorytrend
项目摘要
Premature infants in the Neonatal ICU require hospitalization until they reach
physiological maturity, an average of 60 days. While in the hospital, though, they are at
risk of subacute potentially catastrophic illnesses such as infection, respiratory
decompensation leading to urgent unplanned intubation, and intracranial bleeding.
These illnesses are common and deadly. In each case, early diagnosis has the promise
to improve outcome through early intervention.
The long-term goal of our group is to develop such novel predictive monitoring strategies
as early warning systems through advanced mathematical and statistical analysis of
waveforms and other informatics data from the bedside monitor. This kind of approach
recently led the group and its colleagues at 7 other centers to complete a NICHD-
sponsored randomized clinical trial in 3000 premature infants, the largest ever
conducted in this population. The result was very important - simply showing the results
of a predictive monitor to clinicians reduced the death rate by more than 20%.
This predictive tool, though, requires ICU level monitoring with chest leads for EKG and
breathing signals. Many more infants could be helped if there were strategies for using
just the ubiquitous pulse oximeter, which provides heart rate and O2 saturation data
every 1 or 2 seconds. Deriving predictive algorithms that use this small data stream
requires large databases of relevant clinical information and monitor data, including vital
signs and waveforms, from many infants at multiple sites. The team of clinicians and
mathematicians – a collaboration of University of Virginia, Washington University – St
Louis, and Columbia University – will discover oximetry-based phenotypes of abnormal
physiology and develop algorithms to detect them. The large-scale databases and
computing capability for this work is in daily use, the UVa-Columbia collaboration has
been productive in the first years of this award, and this competitive renewal proposal
will leave them in the position to undertake randomized clinical trials to test the impact of
the new monitoring.
This represents a paradigm shift in patient care – monitors that report trends of
development of health and illness rather than fleeting values.
新生儿ICU中的早产婴儿需要住院直到到达
生理成熟度,平均60天。但是,在医院里,他们在
亚急性的风险潜在灾难性疾病,例如感染,呼吸道
代偿性会导致紧急计划外的插管和颅内出血。
这些疾病是常见和致命的。在每种情况下,早期诊断都有承诺
通过早期干预改善结果。
我们小组的长期目标是制定这种新颖的预测性监测策略
作为预警系统,通过高级数学和统计分析
床头显示器中的波形和其他信息数据。这种方法
最近,该小组及其同事在其他7个中心完成了NICHD-
在3000名早产儿中赞助了随机临床试验,有史以来最大的婴儿
在这个人群中进行。结果非常重要 - 简单地显示结果
临床医生的预测监测率降低了20%以上。
但是,这种预测工具需要使用ICU级别的ICU级别监测,并为EKG和
呼吸信号。如果有使用的策略,可以帮助更多婴儿
只是无处不在的脉搏氧合,它提供心率和O2满意度数据
每1或2秒。得出使用此小数据流的预测算法
需要大量的相关临床信息和监视数据的数据库,包括至关重要
来自多个部位的许多婴儿的体征和波形。临床医生团队和
数学家 - 华盛顿大学弗吉尼亚大学的合作
路易斯和哥伦比亚大学 - 将发现异常的基于氧气的表型
生理和开发算法来检测它们。大规模数据库和
这项工作的计算能力是日常使用,UVA哥伦比亚的合作
在该奖项的头几年和该竞争性更新提案中有生产力
将使他们处于进行随机临床试验的位置,以测试
新监视。
这代表了患者护理的范式转变 - 监控报告趋势的
健康和疾病的发展,而不是短暂的价值观。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAREN D FAIRCHILD其他文献
KAREN D FAIRCHILD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAREN D FAIRCHILD', 18)}}的其他基金
VentFirst: A multicenter RCT of assisted ventilation during delayed cord clamping for extremely preterm infants
VentFirst:针对极早产儿延迟断脐期间辅助通气的多中心随机对照试验
- 批准号:
9440443 - 财政年份:2016
- 资助金额:
$ 66.26万 - 项目类别:
Predictive informatics monitoring in the Neonatal Intensive Care Unit
新生儿重症监护病房的预测信息学监测
- 批准号:
10363865 - 财政年份:2014
- 资助金额:
$ 66.26万 - 项目类别:
Predictive Informatics Monitoring in the Neonatal Intensive Care Unit
新生儿重症监护病房的预测信息学监测
- 批准号:
10225559 - 财政年份:2014
- 资助金额:
$ 66.26万 - 项目类别:
Predictive Informatics Monitoring in the Neonatal Intensive Care Unit
新生儿重症监护病房的预测信息学监测
- 批准号:
9977254 - 财政年份:2014
- 资助金额:
$ 66.26万 - 项目类别:
Predictive informatics monitoring in the Neonatal Intensive Care Unit
新生儿重症监护病房的预测信息学监测
- 批准号:
10655308 - 财政年份:2014
- 资助金额:
$ 66.26万 - 项目类别:
Hypothermia enhances inflammatory cytokine expression via NF-kappa B
低温通过 NF-κ B 增强炎症细胞因子的表达
- 批准号:
7141247 - 财政年份:2006
- 资助金额:
$ 66.26万 - 项目类别:
Hypothermia enhances inflammatory cytokine expression via NF-kappa B
低温通过 NF-κ B 增强炎症细胞因子的表达
- 批准号:
7488903 - 财政年份:2006
- 资助金额:
$ 66.26万 - 项目类别:
Hypothermia enhances inflammatory cytokine expression via NF-kappa B
低温通过 NF-κ B 增强炎症细胞因子的表达
- 批准号:
7686164 - 财政年份:2006
- 资助金额:
$ 66.26万 - 项目类别:
Hypothermia enhances inflammatory cytokine expression via NF-kappa B
低温通过 NF-κ B 增强炎症细胞因子的表达
- 批准号:
7921021 - 财政年份:2006
- 资助金额:
$ 66.26万 - 项目类别:
Hypothermia enhances inflammatory cytokine expression via NF-kappa B
低温通过 NF-κ B 增强炎症细胞因子的表达
- 批准号:
7285222 - 财政年份:2006
- 资助金额:
$ 66.26万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 66.26万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 66.26万 - 项目类别:
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
- 批准号:
10683849 - 财政年份:2023
- 资助金额:
$ 66.26万 - 项目类别:
Risk Stratification for COPD Exacerbations with CT Analysis and Multidimensional Trajectory Subtyping
通过 CT 分析和多维轨迹分型对 COPD 恶化进行风险分层
- 批准号:
10658547 - 财政年份:2023
- 资助金额:
$ 66.26万 - 项目类别:
Identifying older adults who benefit from lung cancer screening
确定受益于肺癌筛查的老年人
- 批准号:
10726195 - 财政年份:2023
- 资助金额:
$ 66.26万 - 项目类别: