Soft Metal, Disulfide, and Cysteine Stresses in Escherichia coli
大肠杆菌中的软金属、二硫化物和半胱氨酸应力
基本信息
- 批准号:8623137
- 负责人:
- 金额:$ 24.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAerobicAffinityAntibioticsBackBacteriaBindingBiochemistryBiologicalBiotaCadmiumCathetersCellsChemicalsChemistryComplexCoupledCouplingCysteineCystineCytoplasmCytoplasmic ProteinDNADataDisulfidesDrug Metabolic DetoxicationEnsureEnvironmentEnzymesEscherichia coliEventFaceGlutathione DisulfideGoalsGrantHabitatsHuman PathologyHydro-LyasesHydroxyl RadicalImmuneIn VitroInvestigationIronKnowledgeLinkMercuryMetal exposureMetalsModelingMononuclearNatureOrganismOutcomeOxidation-ReductionOxidative StressPhysiologicalPlant RootsProductionProteinsPublishingPumpReactive Oxygen SpeciesRecording of previous eventsRiskSilverSolventsStressSulfhydryl CompoundsSulfidesSulfurSystemTestingToxic effectWorkZinccell injurycofactorcopingcopper poisoningdisulfide bonddisulfide compoundfitnessin vivointerestmetal poisoningresearch studyrespiratory enzymestem
项目摘要
DESCRIPTION (provided by applicant): The goals of this study are to investigate the mechanisms by which soft metals, cystine import, and cysteine accumulation can perturb the fitness of Escherichia coli. These three distinct stresses are connected by the central involvement of cysteine chemistry. Soft metals are present in many habitats, where they comprise a threat to bacteria and higher organisms alike. Their toxicity is underscored by the distribution throughout the biota of dedicated detoxification systems that bind and export them. Some of these metals- notably silver and mercury-have a long history of being used as antibiotics. Nevertheless, we have little knowledge of how they actually damage cells. In recent published work we demonstrated that copper poisons E. coli primarily by inactivating Fe/S-dependent dehydratases. It does so by binding the cysteine residues that coordinate the catalytic iron-sulfur clusters of these enzymes, thereby displacing the iron atoms. Preliminary data demonstrate that silver, mercury, cadmium, and zinc have this effect in vitro, too. This study (Aim 1) will test whether these soft metals exert their toxicity through this mechanism in vivo. It will also determine whether soft metals similarly displace iron from mononuclear enzymes, which employ coordinating groups-often including cysteine-that prefer metals other than iron. Aim 2 focuses upon a separate sulfur problem: the risk of disulfide stress when cystine is imported from aerobic environments. Disulfide stress has conventionally been thought to arise from reactive oxygen species, but recent data do not support this idea. However, disulfide stress is a real risk when cells rapidly import disulfide compounds, such as cystine. In principle such an event would seem likely to propagate disulfide bonds to cytoplasmic proteins. Our study of the high-flux transporter suggests that cystine import is linked to reduction, a tacti that would avoid the release of this disulfide into the cytoplasm. In Aim 2 this model will be rigorously tested. Aim 3 addresses the consequence of rapid cystine import: the excessive accumulation of cysteine, which is toxic in its own right. Our data reveals that E. coli deals with
this problem by pumping the cysteine back out of the cell. This investigation will test three plausible mechanisms of cysteine toxicity, and it will identify the exporter(s) that averts it. Collectively this work will illuminate chemical problems that arise from the redox activity and metal affinity of cysteine, as well as the strategies that cells have acquired to protect themselve from it. All three of these sulfur-focused stresses-soft-metal exposure, disulfide import, and cysteine accumulation-occur under conditions that are likely to exist in natural habitats.
描述(由申请人提供):本研究的目的是研究软金属、胱氨酸输入和半胱氨酸积累扰乱大肠杆菌健康的机制。这三种不同的应激通过半胱氨酸化学的核心参与联系起来。软金属存在于许多栖息地,对细菌和高等生物都构成威胁。它们的毒性通过在整个生物群中分布的结合和输出它们的专用解毒系统来强调。其中一些金属,尤其是银和汞,有着悠久的用作抗生素的历史。然而,我们对它们实际上如何损害细胞知之甚少。在最近发表的工作中,我们证明铜主要通过灭活 Fe/S 依赖性脱水酶来毒害大肠杆菌。它通过结合协调这些酶的催化铁硫簇的半胱氨酸残基,从而取代铁原子来实现这一点。初步数据表明,银、汞、镉和锌在体外也有这种作用。本研究(目标 1)将测试这些软金属是否通过这种机制在体内发挥毒性。它还将确定软金属是否类似地从单核酶中取代铁,单核酶采用的配位基团(通常包括半胱氨酸)更喜欢金属而不是铁。目标 2 关注一个单独的硫问题:从有氧环境输入胱氨酸时产生二硫键应激的风险。传统上认为二硫化物应激是由活性氧引起的,但最近的数据并不支持这一观点。然而,当细胞快速输入二硫化合物(例如胱氨酸)时,二硫键应激是一个真正的风险。原则上,这样的事件似乎可能会将二硫键传播到细胞质蛋白上。我们对高通量转运蛋白的研究表明,胱氨酸的输入与还原有关,这种策略可以避免这种二硫键释放到细胞质中。在目标 2 中,该模型将接受严格的测试。目标 3 解决了胱氨酸快速输入的后果:半胱氨酸过度积累,其本身是有毒的。我们的数据显示,大肠杆菌处理
通过将半胱氨酸泵回细胞外来解决这个问题。这项调查将测试半胱氨酸毒性的三种可能机制,并将确定避免半胱氨酸毒性的出口商。总的来说,这项工作将阐明半胱氨酸的氧化还原活性和金属亲和力引起的化学问题,以及细胞为保护自己免受半胱氨酸影响而获得的策略。所有这三种以硫为中心的压力——软金属暴露、二硫化物输入和半胱氨酸积累——都发生在自然栖息地可能存在的条件下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES A. IMLAY其他文献
JAMES A. IMLAY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES A. IMLAY', 18)}}的其他基金
Soft Metal, Disulfide, and Cysteine Stresses in Escherichia coli
大肠杆菌中的软金属、二硫化物和半胱氨酸应力
- 批准号:
8461150 - 财政年份:2012
- 资助金额:
$ 24.77万 - 项目类别:
Oxidative stress and the cellular thiol status of Escherichia coli
大肠杆菌的氧化应激和细胞硫醇状态
- 批准号:
9238154 - 财政年份:2012
- 资助金额:
$ 24.77万 - 项目类别:
Soft Metal, Disulfide, and Cysteine Stresses in Escherichia coli
大肠杆菌中的软金属、二硫化物和半胱氨酸应力
- 批准号:
8271819 - 财政年份:2012
- 资助金额:
$ 24.77万 - 项目类别:
The Physiology of Oxidative Stress in Escherichia coli
大肠杆菌氧化应激的生理学
- 批准号:
7932504 - 财政年份:2009
- 资助金额:
$ 24.77万 - 项目类别:
MECHANISM OF OXIDATIVE DNA DAMAGE IN MODEL ORGANISMS
模型生物中 DNA 氧化损伤的机制
- 批准号:
2807383 - 财政年份:1999
- 资助金额:
$ 24.77万 - 项目类别:
MECHANISM OF OXIDATIVE DNA DAMAGE IN MODEL ORGANISMS
模型生物中 DNA 氧化损伤的机制
- 批准号:
6181408 - 财政年份:1999
- 资助金额:
$ 24.77万 - 项目类别:
相似国自然基金
基于PXDN-周细胞-血管渗漏轴探讨有氧运动改善肺血管重构机制研究
- 批准号:82370422
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NEDD4介导IGFBP7泛素化参与有氧运动抑制泛凋亡改善心肌缺血再灌注损伤的机制研究
- 批准号:82302873
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧康复运动抑制心外膜脂肪组织Th17细胞分化改善HFpEF所致心房颤动实验研究
- 批准号:82372581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
代谢产物丁酸介导的PKM2乳酸化修饰调控小胶质细胞极化参与有氧运动发挥脑梗死后神经保护作用的机制研究
- 批准号:82302861
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧运动依赖ABCG1调节的GSK-3β/Nrf2/ARE抗氧化机制预防化疗药物5氟尿嘧啶诱导的血管内皮损伤机制探索
- 批准号:82360608
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Targeting cytochrome bd as an anti-biofilm strategy
靶向细胞色素 bd 作为抗生物膜策略
- 批准号:
10642243 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
- 批准号:
10464289 - 财政年份:2022
- 资助金额:
$ 24.77万 - 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
- 批准号:
10684663 - 财政年份:2022
- 资助金额:
$ 24.77万 - 项目类别:
Elucidating Oncogenic Mechanisms Underlying Wilms Tumor Using Kidney Organoids
使用肾脏类器官阐明肾母细胞瘤的致癌机制
- 批准号:
10543184 - 财政年份:2021
- 资助金额:
$ 24.77万 - 项目类别:
Enhancing bioremediation of groundwater co-contaminated by chlorinated volatile organic compounds and 1,4-dioxane using novel macrocyclic materials
使用新型大环材料增强氯化挥发性有机化合物和 1,4-二恶烷共同污染的地下水的生物修复
- 批准号:
10320966 - 财政年份:2021
- 资助金额:
$ 24.77万 - 项目类别: