Integrative analysis of genetic variation and transcription factor networks to elucidate mechanisms of mental health disorders
遗传变异和转录因子网络的综合分析以阐明精神健康障碍的机制
基本信息
- 批准号:9886483
- 负责人:
- 金额:$ 70.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAlgorithmsAllelesAnimal ModelAttentionBindingBinding SitesBiologyBipolar DepressionBipolar DisorderCRISPR interferenceCatalogsCellsChIP-seqChromosome MappingClinicalComplexComputing MethodologiesDNADNA BindingDNA-Protein InteractionDataData SetDiseaseEnvironmentGene ExpressionGenesGeneticGenetic DeterminismGenetic DiseasesGenetic PolymorphismGenetic RiskGenetic TranscriptionGenetic VariationGenomeGenomicsGenotype-Tissue Expression ProjectHumanHuman GeneticsIn VitroIndividualInstructionInterventionKnowledgeLightLinear ModelsMapsMediator of activation proteinMental HealthMental disordersMethodologyMethodsModelingMolecularNuclearPathway interactionsPharmacologyPhysiologicalPopulationPost-Translational Protein ProcessingProteinsQuantitative GeneticsQuantitative Trait LociRegulator GenesRegulatory ElementRegulonResearch PersonnelRiskRoleSchizophreniaTherapeuticTissue SampleTissuesTrans-Omics for Precision MedicineUnipolar DepressionUntranslated RNAVariantautism spectrum disorderbasecell typecohortdesigndisease phenotypedisorder riskexperimental studyfunctional genomicsgenetic analysisgenetic associationgenetic variantgenome sequencinggenome wide association studygenome-widehuman datahuman diseasehuman tissueimprovedinnovationinter-individual variationinterestmRNA Expressionpromoterrare variantrisk varianttraittranscription factortranscriptometranscriptome sequencingwhole genome
项目摘要
PROJECT SUMMARY
In this project we will bridge the traditionally largely distinct fields of quantitative genetics and mechanistic
biology to obtain a mechanistic understanding of regulatory effects of genetic variants in humans. Leveraging
on large human data sets providing parallel whole genome and transcriptome sequencing data, we will extend
proof-of-principle studies and computational approaches developed and validated in model organisms to achieve
improved functional interpretation of GWAS loci associated to mental health disorders. We focus
specifically on the role of transcription factors as both upstream regulators of genetic risk variants as well as
mediators of downstream network-level effects. As Aim 1, we will develop extend methods to allow accurate
modeling of transcription factor activity from transcriptome data from large cohorts of human tissue samples
in GTEx, PsychENCODE, and TOPMed cohorts. These data will be used in Aim 2 to dissect the mechanisms
underlying proximal genetic regulatory variants in cis. We hypothesize that dynamics of transcription factor
activity and binding modifies the effect size of genetic regulatory variants across individuals, tissues, and cell
types, and that by modeling this relationship we can detect TFs regulating specific regulatory variants and
noncoding disease-associated loci. In parallel Aim 3, we will map network-level trans-acting genetic variants
for inter-individual variation in TF activity. Going beyond treating TF activity as a tissue-specific parameter
of the cellular environment, we will now consider it as a variable quantitative trait itself, and by GWAS/TWAS for
inferred TF activity, we map specific polymorphisms that affect TF activity within each tissue. We anticipate that
the trans-acting loci discovered in this analysis will be of major interest not only to basic biology of regulatory
networks, but also for explaining GWAS associations to complex diseases, and to mental health in particular.
项目摘要
在这个项目中,我们将桥接传统的定量遗传学和机械性领域
生物学以获得对人类遗传变异的调节作用的机械理解。利用
在提供平行整个基因组和转录组测序数据的大型人类数据集中,我们将扩展
原则证明研究和计算方法在模型生物中开发和验证以实现
改善了与心理健康障碍相关的GWAS基因座的功能解释。我们集中精力
具体而言,转录因子的作用是遗传风险变异的上游调节剂以及
下游网络级效应的介体。作为目标1,我们将开发扩展方法以允许准确
来自大量人类组织样品的转录组数据的转录因子活性的建模
在GTEX,Psychencode和Topmed Colets中。这些数据将用于AIM 2用于剖析机制
顺式中的基本遗传调节变体。我们假设转录因子的动力学
活性和结合改变了个体,组织和细胞的遗传调节变异的效果大小
类型,通过对这种关系进行建模,我们可以检测到调节特定调节变体的TFS和
非编码疾病相关的基因座。在平行AIM 3中,我们将绘制网络级的反式遗传变异
用于TF活性的个体间变化。超越将TF活性视为组织特异性参数
在蜂窝环境中,我们现在将其视为可变定量性状本身,而GWAS/TWA则将其视为
推断的TF活性,我们绘制影响每个组织内TF活性的特定多态性。我们预料到这一点
在此分析中发现的跨作用基因座不仅对监管的基本生物学具有重要意义
网络,但也用于解释GWAS与复杂疾病,尤其是对心理健康的关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harmen J Bussemaker其他文献
Harmen J Bussemaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harmen J Bussemaker', 18)}}的其他基金
Integrative analysis of genetic variation and transcription factor networks to elucidate mechanisms of mental health disorders
遗传变异和转录因子网络的综合分析以阐明精神健康障碍的机制
- 批准号:
10550151 - 财政年份:2015
- 资助金额:
$ 70.78万 - 项目类别:
Dissecting the genetic and molecular networks underlying longevity and aging
剖析长寿和衰老背后的遗传和分子网络
- 批准号:
9145438 - 财政年份:2015
- 资助金额:
$ 70.78万 - 项目类别:
Integrative analysis of genetic variation and transcription factor networks to elucidate mechanisms of mental health disorders
遗传变异和转录因子网络的综合分析以阐明精神健康障碍的机制
- 批准号:
10293597 - 财政年份:2015
- 资助金额:
$ 70.78万 - 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
- 批准号:
7943348 - 财政年份:2009
- 资助金额:
$ 70.78万 - 项目类别:
Inferring regulatory circuitry from microarray data
从微阵列数据推断调节电路
- 批准号:
6934499 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
- 批准号:
8584808 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring regulatory circuitry from microarray data
从微阵列数据推断调节电路
- 批准号:
6823537 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
- 批准号:
7840450 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring regulatory circuitry from microarray data
从微阵列数据推断调节电路
- 批准号:
7242590 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
- 批准号:
8069368 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
- 批准号:
10440579 - 财政年份:2022
- 资助金额:
$ 70.78万 - 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
- 批准号:
10644013 - 财政年份:2022
- 资助金额:
$ 70.78万 - 项目类别: