Regulation of glucose homeostasis via the molecular clock machinery and the hepatic vagus nerve after Roux-en-Y gastric bypass
Roux-en-Y胃绕道手术后通过分子钟机制和肝迷走神经调节葡萄糖稳态
基本信息
- 批准号:9886571
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:ARNTL geneAdrenergic FibersAffectAmericanAnimalsAreaAttenuatedBackBehaviorBody WeightBody Weight decreasedBrainCaloriesCardiovascular DiseasesCell NucleusCellsCircadian DysregulationCircadian RhythmsConsumptionDataDenervationDevelopmentDiabetes MellitusDietDiseaseDiurnal RhythmDorsalEatingEating BehaviorEnergy MetabolismFastingFeeding behaviorsFiberFoodFutureGastric BypassGene ExpressionGenesGluconeogenesisGlucoseHepaticHigh Fat DietHormonalHumanHyperglycemiaHypothalamic structureInsulin ResistanceKnockout MiceLeptinLightLiverMeasuresMediatingMedicalMetabolicModelingMotorMusMutant Strains MiceNerveNeuronsNon-Insulin-Dependent Diabetes MellitusObese MiceObesityObesity EpidemicOperative Surgical ProceduresOverweightPathway interactionsPatternPeriodicityPeripheralPhasePhysiologicalPlayProsencephalonRegulatory PathwayResearchRisk FactorsRoleSignal TransductionSleepSleep Wake CycleStructureSyndromeTestingThinnessTimeVagotomyVagus nerve structureVeteransWeightWorkXenobiotic Metabolismbariatric surgerybaseblood glucose regulationcarbohydrate metabolismcircadiancomorbidityenergy balancefeedingfood consumptionglucose metabolismglucose productionglycogenolysishigh riskimprovedinsulin sensitivitylipid metabolismmolecular clockmouse modelnovelobesity managementparaventricular nucleusresponserestorationshift worksuprachiasmatic nucleus
项目摘要
This application describes a structured research plan targeted to explore the role of the molecular “clock” –
which is responsible for maintaining endogenous circadian rhythm - in the mechanism of glucose regulation
after gastric bypass. It is estimated that ~ 30 million Americans have diabetes (mainly type 2) which has been
tightly associated with insulin resistance and obesity. Furthermore, 1 in every 3 Americans is currently obese
and by the year 2020 it’s estimated that ~ 75% will be either overweight or obese. Bariatric surgery proved to
be very effective in reducing body weight and reversing most of the obesity associated co-morbidities (such
as diabetes) with effects lasting as long as 20 years. Emerging evidence suggests that Roux-en-Y gastric
bypass (RYGB) induces its metabolic effects by modulating neuronal-hormonal pathways between the gut
and energy regulating centers within the brain. We developed a mouse model of RYGB that can recapitulate
most of the human findings and this model can be used to further dissect the underlying mechanism of this
surgery. In this proposal, we show that RYGB reverses the disruption caused by high fat diet (HFD) on diurnal
food intake behavior. It causes an increase in the percentage of food intake consumed during the dark cycle
(physiologic feeding time) back to that observed in healthy lean animals. RYGB also corrects the HFD-
induced alteration in hepatic clock gene oscillation as well as the paraventricular nucleus of the
hypothalamus. The improvement in glucose metabolism after RYGB was shown to be primarily due to
reduction in hepatic glucose production and amelioration of hepatic insulin sensitivity. The molecular clock
machinery (within the liver and certain areas of the brain) plays a key role in lipid, carbohydrate, and
xenobiotic metabolism in synchrony with the fasting/feeding cycle. Here, we show that RYGB induces an
attenuated response to weight loss and glucose improvement in clock∆19 mutant mice (deficient in the Clock
gene) compared to wild-type controls. In addition, we acquired new data showing that selective forebrain
deletion of Bmal1 (another core clock gene) disrupts normal circadian feeding and results in abnormal hepatic
glucose production independent of weight. Interestingly, selective hepatic vagotomy corrects this metabolic
abnormality. This data suggest that the molecular clock play a role in the gluco-regulatory effects of RYGB in
a pathway involving the hepatic vagus nerve. Aim#1 will test if the effects of RYGB on glucose homeostasis
require a functional central (i.e hypothalamic) and peripheral (i.e. hepatic) molecular clock. Aim#2 will test if
RYGB reprograms central clock gene expression to regulate glucose metabolism via a mechanism involving
the hepatic vagus. Identifying pathways used by RYGB to induce its metabolic benefits will hopefully assist in
future development of less invasive therapies for obesity and type 2 diabetes.
该应用程序描述了一个旨在探索分子“时钟”作用的结构化研究计划 -
负责维持内源性昼夜节律 - 葡萄糖调节机制
胃旁路后。据估计,约有3000万美国人患有糖尿病(主要是2型)
与胰岛素抵抗和肥胖密切相关。此外,目前每3名美国人中有1人肥胖
到2020年,估计约有75%的人超重或肥胖。减肥手术被证明是
在减轻体重和逆转大多数肥胖相关的合并症方面非常有效(这样
作为糖尿病),其影响持续了长达20年。新兴的证据表明roux-en-y胃
旁路(RYGB)通过调节肠道之间的神经元激素途径来诱导其代谢作用
和能量调节集中在大脑内。我们开发了一个可以概括的RYGB的鼠标模型
大多数人类发现和该模型可用于进一步剖析此的基本机制
外科手术。在此提案中,我们表明RYGB逆转了昼夜高脂饮食(HFD)造成的破坏
食物摄入行为。这会导致在黑暗周期中消耗的食物摄入量的百分比增加
(生理喂养时间)回到健康瘦动物中观察到的时间。 RYGB还纠正了HFD-
诱导的肝时钟基因振荡的改变以及
下丘脑。 RYGB后葡萄糖代谢的改善被证明是主要的
肝葡萄糖产生的降低和肝胰岛素敏感性的改善。分子时钟
机械(在大脑的肝脏和某些区域内)在脂质,碳水合物和
与禁食/进食周期同步的异生物代谢。在这里,我们表明RYGB引起了
时钟∆19突变小鼠对体重减轻和葡萄糖改善的反应减弱(时钟不足
与野生型对照相比,基因)。此外,我们获得了新数据,显示了选择性前脑
BMAL1(另一个核心时钟基因)的删除会破坏正常的昼夜节律进食,并导致异常肝
葡萄糖产生与重量无关。有趣的是,选择性肝迷失术纠正了这种代谢
紊乱 etc。该数据表明,分子时钟在RYGB在RYGB中的葡萄糖调节作用中起作用
涉及肝迷走神经的途径。 AIM#1将测试RYGB对葡萄糖稳态的影响是否
需要功能性中心(即下丘脑)和外周(即肝)分子钟。 AIM#2将测试是否
RYGB重新编程中心时钟基因表达以通过涉及的机制调节葡萄糖代谢
肝之迷。识别RYGB用于诱导其代谢益处的途径将有望帮助
肥胖症和2型糖尿病的侵入性疗法的未来发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohamad Mokadem其他文献
Mohamad Mokadem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohamad Mokadem', 18)}}的其他基金
Regulation of glucose homeostasis via the molecular clock machinery and the hepatic vagus nerve after Roux-en-Y gastric bypass
Roux-en-Y胃绕道术后通过分子钟机制和肝迷走神经调节葡萄糖稳态
- 批准号:
10438525 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Regulation of glucose homeostasis via the molecular clock machinery and the hepatic vagus nerve after Roux-en-Y gastric bypass
Roux-en-Y胃绕道术后通过分子钟机制和肝迷走神经调节葡萄糖稳态
- 批准号:
10553163 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似国自然基金
SARS-CoV-2刺突蛋白作为β肾上腺素受体配体介导心脏炎症和纤维化的机制研究
- 批准号:82300295
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心脏成纤维细胞β2-肾上腺素能受体对心衰小细胞外囊泡释放的作用机制研究
- 批准号:82370276
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
β2肾上腺素受体调控CD36介导的心肌细胞和心脏成纤维细胞代谢重塑在心梗后心衰中的双向作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
β2肾上腺素受体调控CD36介导的心肌细胞和心脏成纤维细胞代谢重塑在心梗后心衰中的双向作用及机制研究
- 批准号:82273926
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
Per2调控心肌细胞自噬在β1肾上腺素受体自身抗体诱导心房纤维化及房颤中的作用机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Evaluation of adeno-associated viral (AAV) mediated gene replacement therapy as a therapeutic option for SLC25A4 deficiency
评估腺相关病毒 (AAV) 介导的基因替代疗法作为 SLC25A4 缺陷的治疗选择
- 批准号:
10606065 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Role and Branching Dynamics of Sympathetic Nerves in Ovarian Folliculogenesis
交感神经在卵巢卵泡发生中的作用和分支动态
- 批准号:
10607058 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Rational Design from Cryo-EM Structures of High-Affinity Ryanodine Receptor Ligands Based on Natural Peptides
基于天然肽的高亲和力兰尼定受体配体的冷冻电镜结构的合理设计
- 批准号:
10729564 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Role of Sensory Neurons Innervating Internal Organs
感觉神经元支配内脏器官的作用
- 批准号:
10504106 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The Role of Sensory Neurons Innervating Internal Organs
感觉神经元支配内脏器官的作用
- 批准号:
10685444 - 财政年份:2022
- 资助金额:
-- - 项目类别: