Lysine Acetylation as Switch for Optic Atrophy 1 Inactivation
赖氨酸乙酰化作为视神经萎缩 1 失活的开关
基本信息
- 批准号:9887403
- 负责人:
- 金额:$ 51.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayAcetylationAddressAgingAlzheimer&aposs DiseaseAntibodiesArchitectureAutosomal Dominant Optic AtrophyAxonAxonal TransportBindingBiological MarkersBuffersCRISPR/Cas technologyCell DeathCell SurvivalCellsCrista ampullarisCryoelectron MicroscopyDataDeacetylaseDeacetylationDefectDetectionDiagnosisDiseaseDominant-Negative MutationDynaminEnergy SupplyExhibitsFamilyFunctional disorderGenetic CodeGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHealthHomeostasisHumanHydrolysisIn VitroInjuryInner mitochondrial membraneKnock-outKnowledgeLipid BindingLysineMaintenanceMapsMembraneMembrane FusionMetabolicMetabolismMicroscopyMissense MutationMitochondriaMitochondrial DNAMutationNerve DegenerationNeurodegenerative DisordersNeuronal InjuryNeuronsOptic AtrophyOptic NerveOrganellesParkinson DiseasePathogenesisPathogenicityPatientsPlayPost-Translational Protein ProcessingProcessProteinsProteomicsResearchResolutionRespirationRoleSiteStructural ModelsStructureSurfaceSynapsesSynaptic TransmissionTechniquesTestingTimeautosomal dominant mutationearly onsetimprovedin vivoinduced pluripotent stem cellmitochondrial dysfunctionmutantneuron lossneuropathologynovelnovel therapeutic interventionretinal ganglion cell degenerationtomographytool
项目摘要
Neurons depend on mitochondria to supply energy for processes such as synaptic transmission, channel
activity, and axonal transport. To meet the constantly changing energy demands of neurons, mitochondria
undergo frequent fission and fusion. Fission and fusion enhance respiration, ATP synthesis, Ca2+ homeostasis,
clearance of damaged organelles by mitophagy, neuronal function, and cell survival. However, excessive
fission and lack of fusion can cause mitochondrial fragmentation and is implicated in neurodegeneration.
Mitochondrial fission and fusion are regulated by large GTPases of the dynamin family. Optic Atrophy 1
(OPA1) is required for mitochondrial inner membrane fusion and maintenance of cristae structure, mtDNA,
respiration, ATP synthesis, Ca2+ homeostasis, and neuronal cell survival. Significantly, autosomal dominant
mutations in OPA1 cause a spectrum of neurodegenerative disorders, including dominant optic atrophy (DOA),
characterized by degeneration of retinal ganglion cells (RGCs) and optic nerve axons. The majority of OPA1
missense mutations are located in the conserved GTPase (G) domain and interfere with normal OPA1 function
by dominant-negative mechanisms. Thus, inactivation of the G-domain is associated with disease
pathogenesis.
While OPA1 mutations cause early-onset familial forms of neurodegenerative disease, it is unknown
whether OPA1 can also be inactivated in late-onset sporadic diseases. Remarkably, recent high-throughput
proteomic screens identified a major lysine acetylation site located in the G-domain and a hotspot of
pathogenic OPA1 mutations, predicting a critical functional role. The function of this posttranslational
modification (PTM) is unknown. In addition, research tools to investigate the significance of OPA1 lysine
acetylation are currently missing.
Here, we will investigate whether lysine acetylation in the G-domain is a new PTM regulating OPA1
function. We will address the following questions: (1) Does acetylation inhibit OPA1 GTP hydrolysis? (2) Does
acetylated OPA1 inhibit mitochondrial fusion and function? (3) Does OPA1 acetylation play a causal role in
neuronal injury and cell death? Lysine acetylation might emerge as a novel mechanism of OPA1 inactivation
during aging and contribute to mitochondrial fragmentation and dysfunction in sporadic neurodegenerative
disorders. Modulating OPA1 acetylation might be a new neuroprotective strategy.
神经元依赖线粒体为突触传播等过程提供能量
活动和轴突运输。为了满足神经元不断变化的能源需求,线粒体
经常进行裂变和融合。裂变和融合增强呼吸,ATP合成,Ca2+稳态,
通过线粒体,神经元功能和细胞存活对细胞器的清除。但是,过多
裂变和缺乏融合会导致线粒体碎片化,并与神经变性有关。
线粒体裂变和融合受动力蛋白家族的大GTPase调节。光学萎缩1
(OPA1)是线粒体内膜融合和Cristae结构的维护所必需的,MtDNA,
呼吸,ATP合成,Ca2+稳态和神经元细胞存活。值得注意的是,常染色体显性
OPA1中的突变引起神经退行性疾病的频谱,包括显性视神经萎缩(DOA),
以视网膜神经节细胞(RGC)和视神经轴突的变性为特征。大多数OPA1
错义突变位于保守的GTPase(G)结构域中,并干扰正常的OPA1功能
通过主导的阴性机制。因此,G域的失活与疾病有关
发病。
虽然OPA1突变会引起早期发作的神经退行性疾病的家族性形式,但尚不清楚
在晚期零星疾病中,OPA1是否也可能被灭活。值得注意的是,最近的高通量
蛋白质组学筛选确定了位于G域中的主要赖氨酸乙酰化位点和一个热点
致病性OPA1突变,预测了关键的功能作用。这种翻译后的功能
修改(PTM)未知。此外,研究OPA1赖氨酸意义的研究工具
目前缺少乙酰化。
在这里,我们将研究G域中的赖氨酸乙酰化是否是调节OPA1的新PTM
功能。我们将解决以下问题:(1)乙酰化是否会抑制OPA1 GTP水解? (2)做
乙酰化的OPA1抑制线粒体融合和功能? (3)OPA1乙酰化在
神经元损伤和细胞死亡?赖氨酸乙酰化可能会成为OPA1失活的新机制
在衰老期间并导致偶发神经退行性的线粒体碎片和功能障碍
疾病。调节OPA1乙酰化可能是一种新的神经保护策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ella R Bossy-Wetzel其他文献
Ella R Bossy-Wetzel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ella R Bossy-Wetzel', 18)}}的其他基金
相似国自然基金
仙茅酚苷类成分靶向组蛋白去乙酰化酶HDAC1抑制BMSC衰老防治老年性骨质疏松的机制
- 批准号:82304806
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丁酸上调HSD11b2乙酰化抑制HPA轴激活改善孤独症样社交障碍机制研究
- 批准号:82372559
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
高糖水平通过JUN乙酰化修饰上调NCAPD3促进结直肠癌发生的分子机制
- 批准号:82303250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
芪苓温肾消囊颗粒通过HDAC5调控GATA1启动子区H3K27乙酰化改善PCOS妊娠早期流产的机制研究
- 批准号:82374498
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Emerging therapeutic candidates for rare maternally inherited mitochondrial diseases with shared etiologies
具有共同病因的罕见母系遗传线粒体疾病的新兴治疗候选药物
- 批准号:
10702207 - 财政年份:2021
- 资助金额:
$ 51.61万 - 项目类别:
Emerging therapeutic candidates for rare maternally inherited mitochondrial diseases with shared etiologies
具有共同病因的罕见母系遗传线粒体疾病的新兴治疗候选药物
- 批准号:
10439890 - 财政年份:2021
- 资助金额:
$ 51.61万 - 项目类别:
Emerging therapeutic candidates for rare maternally inherited mitochondrial diseases with shared etiologies
具有共同病因的罕见母系遗传线粒体疾病的新兴治疗候选药物
- 批准号:
10301261 - 财政年份:2021
- 资助金额:
$ 51.61万 - 项目类别:
Lowering Mitochondrial ATP Synthase Activity Slows Aging and Alzheimer's Disease
降低线粒体 ATP 合酶活性可延缓衰老和阿尔茨海默病
- 批准号:
10437597 - 财政年份:2020
- 资助金额:
$ 51.61万 - 项目类别:
Lysine Acetylation as Switch for Optic Atrophy 1 Inactivation
赖氨酸乙酰化作为视神经萎缩 1 失活的开关
- 批准号:
10335247 - 财政年份:2020
- 资助金额:
$ 51.61万 - 项目类别: