Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
基本信息
- 批准号:8668767
- 负责人:
- 金额:$ 37.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdhesionsAdhesivesAreaBacteriaBiodegradationChargeChemicalsChemistryCollagenCollagen FibrilCommunitiesComposite ResinsCopperDentalDental AmalgamDental cariesDentinDentistryDiffuseDisinfectionEffectivenessEngineeringEnsureEnvironmentEstheticsExpenditureFailureFluoridesFoundationsFree RadicalsGasesGoalsHealthHealthcareHumanIn SituInfiltrationLeadLinkLongevityOperative DentistryOralPatientsPenetrationPeroxidesPlant ResinsPlasmaPolymersQuality of lifeReactionRecurrenceResearchResidual stateResistanceSolidSolutionsSolventsSourceSurfaceSwellingSystemTechniquesTechnologyTimeTooth structureTranslatingUrsidae FamilyWaterWorkbasechemical bindingchemical bondcomposite restorationcostcovalent bondcrosslinkdemineralizationdensitydesignimprovedinnovationkillingsmicroorganismmonomernew technologynoveloral bacteriaparticlepolymerizationprematurerestorationrestorative dentistrysealsoundstemtreatment effect
项目摘要
DESCRIPTION (provided by applicant): The scientific objective of this proposal is to employ new surface/interface chemistries/functionalities induced by non-thermal plasmas for robust and durable dentin adhesion, thus significantly extending the longevity of resin-based tooth restorations. The proposed research stems from the critical challenge long facing restorative dentistry: dental restorations based on composite resins have a prohibitively high failure rate. One primary reason for the premature failure is the lack of a tight and long-lasting adhesion between the composite resin and the underline dentin. The inability of the current state-of-the-art bonding techniques to form a tight resin/dentin adhesion is due to three major factors. First, the bonding between resin and dentin collagen, which relies on the infiltration and subsequent entanglement of adhesive resins with exposed collagen fibrils, is poor. The micromechanical interlocking mechanism is intrinsically problematic as insufficient penetration, incomplete polymerization and solvent/water swelling all prohibit the formation of a tight adhesion. Second, the stability and quality of the dentin substrates is often poor. When the foundation to which composite resins adhere is itself shaky, achieving long-lasting restoration is not just challenging, but impossible. Third, the strength and quality of infiltrated resin polymers is usually poor due chiefly to the incomplete polymerization of current adhesives under oral environment. In this proposal, multifunctional non-thermal plasmas with judiciously engineered chemistries will be utilized to simultaneously address all three critical issues. Such a novel and multifunctional plasma technique has the following unique features/functions: 1) sterilize the area of cavity, eliminating residual caries-causing microorganisms; 2) enable direct fluoride delivery to dentin substrates to inhibit demineralization/bacterial attack, thus reduce recurrent caries and improve dentin substrate stability; 3) provide controllable plasma chemistries to tailor the surface energy in-situ and on-demand for enhanced adhesive penetration into exposed collagen fibrils; 4) participate in network polymerization and crosslinking reactions in resin matrix, consequently increase the monomer/polymer conversion and crosslinking density of the resin matrix and thus producing a more cohesive and degradation-resistant resin matrix; 5) improve the stability of the dentin substrates against biodegradation through enhanced resin protection; 6) yield a chemical/covalent bonding between adhesive resins and collagen fibrils, thus enhancing the adhesive/dentin bond strength. Various characterization techniques will be utilized to thoroughly elucidate the plasma treatment effects on the dentin and adhesive surface/interface. The goal is not only to confirm that the design principles and the engineered plasma technology/chemistries work, but also gain deep understanding into how and why they do.
描述(由申请人提供):该提案的科学目标是采用非热等离子体诱导的新表面/界面化学/功能来实现坚固耐用的牙本质粘附,从而显着延长树脂基牙齿修复体的寿命。拟议的研究源于修复牙科长期面临的关键挑战:基于复合树脂的牙科修复体的失败率极高。过早失效的一个主要原因是复合树脂和下线牙本质之间缺乏紧密且持久的粘合力。目前最先进的粘合技术无法形成紧密的树脂/牙本质粘合,这是由于三个主要因素。首先,树脂和牙本质胶原蛋白之间的结合很差,这种结合依赖于粘合树脂的渗透和随后与暴露的胶原纤维的缠结。微机械联锁机制本质上是有问题的,因为渗透不足、聚合不完全和溶剂/水膨胀都会阻碍紧密粘附的形成。其次,牙本质基质的稳定性和质量往往较差。当复合树脂所粘附的基础本身摇摇欲坠时,实现持久的修复不仅具有挑战性,而且是不可能的。第三,渗透树脂聚合物的强度和质量通常较差,这主要是由于现有粘合剂在口腔环境下聚合不完全所致。在该提案中,将利用具有精心设计的化学成分的多功能非热等离子体来同时解决所有三个关键问题。这种新颖的多功能等离子体技术具有以下独特的特点/功能:1)对蛀牙区域进行消毒,消除残留的致龋微生物; 2) 能够将氟化物直接输送至牙本质基质,抑制脱矿/细菌侵袭,从而减少龋齿复发并提高牙本质基质稳定性; 3) 提供可控的等离子体化学物质,以原位和按需定制表面能,以增强粘合剂对暴露的胶原纤维的渗透; 4)参与树脂基体中的网络聚合和交联反应,从而提高树脂基体的单体/聚合物转化率和交联密度,从而产生更具内聚性和抗降解性的树脂基体; 5)通过增强树脂保护,提高牙本质基质抗生物降解的稳定性; 6)在粘合树脂和胶原原纤维之间产生化学/共价键合,从而增强粘合/牙本质粘合强度。将利用各种表征技术来彻底阐明等离子体处理对牙本质和粘合表面/界面的影响。目标不仅是确认设计原理和工程等离子体技术/化学物质的工作原理,而且还深入了解它们的工作原理和原因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YONG WANG其他文献
YONG WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YONG WANG', 18)}}的其他基金
Infrared Spectroscopic Imaging and Machine Learning for Risk Stratification of Oral Epithelial Dysplasia
红外光谱成像和机器学习用于口腔上皮发育不良的风险分层
- 批准号:
10606086 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
Development of multifunctional resins for robust dentin bonding
开发用于牢固牙本质粘合的多功能树脂
- 批准号:
10412961 - 财政年份:2018
- 资助金额:
$ 37.69万 - 项目类别:
Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
- 批准号:
8470618 - 财政年份:2011
- 资助金额:
$ 37.69万 - 项目类别:
Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
- 批准号:
8288699 - 财政年份:2011
- 资助金额:
$ 37.69万 - 项目类别:
Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
- 批准号:
8183962 - 财政年份:2011
- 资助金额:
$ 37.69万 - 项目类别:
Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
- 批准号:
8868096 - 财政年份:2011
- 资助金额:
$ 37.69万 - 项目类别:
Effect of Noise Induced Hearing Loss on AVCN Principal Neurons
噪声性听力损失对 AVCN 主神经元的影响
- 批准号:
7486435 - 财政年份:2006
- 资助金额:
$ 37.69万 - 项目类别:
Effect of Noise Induced Hearing Loss on AVCN Principal Neurons
噪声性听力损失对 AVCN 主神经元的影响
- 批准号:
7383815 - 财政年份:2006
- 资助金额:
$ 37.69万 - 项目类别:
Effect of Noise Induced Hearing Loss on AVCN Principal Neurons
噪声性听力损失对 AVCN 主神经元的影响
- 批准号:
7197353 - 财政年份:2006
- 资助金额:
$ 37.69万 - 项目类别:
Effect of Noise Induced Hearing Loss on AVCN Principal Neurons
噪声性听力损失对 AVCN 主神经元的影响
- 批准号:
7100564 - 财政年份:2006
- 资助金额:
$ 37.69万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of OXPHOS Assembly in Skeletal Muscles
骨骼肌中 OXPHOS 组装的调节
- 批准号:
10660712 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
- 批准号:
10513140 - 财政年份:2022
- 资助金额:
$ 37.69万 - 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
- 批准号:
10670397 - 财政年份:2022
- 资助金额:
$ 37.69万 - 项目类别:
Modeling mechanisms in cytokinesis, cell polarization and motility
胞质分裂、细胞极化和运动的建模机制
- 批准号:
10589923 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
Modeling mechanisms in cytokinesis, cell polarization and motility
胞质分裂、细胞极化和运动的建模机制
- 批准号:
10378767 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别: