Advanced preoperative assessment of meningiomas
脑膜瘤的高级术前评估
基本信息
- 批准号:9755633
- 负责人:
- 金额:$ 35.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:Acoustic NeuromaAddressAdherenceAlgorithmsArachnoid materBenignBrainCellsClinicClinicalCollaborationsComplexCounselingDataDetectionDevelopmentDiseaseEdemaEnvironmentEquilibriumExcisionGoalsHealthImageImaging TechniquesIncidenceInterventionIntracranial NeoplasmsKnowledgeLesionLightLocationMachine LearningMagnetic Resonance ElastographyMagnetic Resonance ImagingMapsMeasuresMethodsNetwork-basedNeurosurgeonNoiseOperative Surgical ProceduresOutcomePatientsPerformancePituitary Gland AdenomaProbabilityProceduresPropertyPublishingResearchResolutionRiskSamplingSkull Base NeoplasmsSurgeonSymptomsTestingTimeTissuesTrainingTranslatingUnited StatesWorkartificial neural networkbaseclinical practiceeffective therapyexperienceexperimental studyheuristicshuman subjectimaging approachimaging modalityimprovedmagnetic fieldmechanical propertiesmeningiomamultimodalityneural networkneural network architectureneurosurgerypredictive modelingsimulationsurgical risktooltreatment choicetreatment strategytumor
项目摘要
PROJECT SUMMARY
Meningiomas, which arise from arachnoid cells, make up >1/3 of all intracranial tumors. While typically benign,
these tumors induce clinical symptoms due to mass effect and peritumoral edema. In cases requiring
intervention, gross total resection provides the best outcomes when possible. However, treatment strategy is
ultimately decided by determining the proper balance between surgical difficulty and the patient's overall
health. Two mechanical properties are important predictors of surgical difficulty: tumor stiffness and adherence
to surrounding tissues. Knowledge of these properties before surgery would allow clinicians to more accurately
assess surgical risk and identify the most effective treatment strategy. Mechanical properties are difficult to predict
by conventional imaging approaches, but can be directly assessed by Magnetic Resonance Elastography
(MRE) and related Slip Interface Imaging (SII). In published studies, we have shown that MRE-based stiffness
estimates are significantly correlated with tumor stiffness in meningiomas and pituitary adenomas.
Furthermore, SII accurately predicted tumor adherence in meningiomas and vestibular schwannomas. Still,
challenges remain to make these findings clinically-impactful.
For estimating stiffness, the primary limitation lies in resolution. Therefore, in Aim 1 we will develop a voxel-
wise classifier of tumor stiffness. This aim will build on our recently published neural network-based inversion
(NNI), which has demonstrated superior performance to conventional direct inversions in simulation and in the
brain. In Aim 1a, we will advance NNI by implementing more complex neural network architectures and
creating more realistic simulations for training. In Aim 1b, the advances will be validated in a phantom with
inhomogeneous stiffness. Finally, in Aim 1c with the aid of our Neurosurgery collaborators, we will collect a
large sample of surgical stiffness assessments. We will use these assessments to train a voxel-wise stiffness
classifier, which will then be validated in a separate test set. This aim will result in a map that conveys both
stiffness and confidence in the prediction on a scale that is clinically meaningful to surgeons.
The most-pressing limitations in SII include the subjective interpretation of the images and the lack of spatially
resolved predictions. Aim 2 will address these challenges by developing a voxel-wise slip interface classifier. In
Aim 2a, we will investigate a neural network-based predictor of slip interfaces to add to our current methods. In
Aim 2b, we will evaluate if this new method can improve predictions in phantom experiments. In Aim 2c, we will
again leverage surgical assessments of meningioma adherence to train and test a voxel-wise classifier. The
result of this aim will be a map of tumor adherence represented as an easily interpreted probability.
Taken together, these aims will provide neurosurgeons with clinically-important information to improve patient
management. More broadly, technical advances made in this project will impact the entire MRE field.
项目概要
脑膜瘤由蛛网膜细胞产生,占所有颅内肿瘤的 1/3 以上。虽然通常是良性的,
这些肿瘤由于占位效应和瘤周水肿而诱发临床症状。在需要的情况下
干预、大体全切除术可在可能的情况下提供最佳结果。但治疗策略是
最终通过确定手术难度和患者整体状况之间的适当平衡来决定
健康。两种机械特性是手术难度的重要预测因素:肿瘤硬度和粘附性
至周围组织。手术前了解这些特性将使临床医生能够更准确地
评估手术风险并确定最有效的治疗策略。机械性能难以预测
通过传统成像方法,但可以通过磁共振弹性成像直接评估
(MRE) 和相关的滑动界面成像 (SII)。在已发表的研究中,我们表明基于 MRE 的刚度
估计值与脑膜瘤和垂体腺瘤的肿瘤硬度显着相关。
此外,SII 准确预测了脑膜瘤和前庭神经鞘瘤中的肿瘤粘附。仍然,
要使这些发现具有临床影响力仍然存在挑战。
对于估计刚度,主要限制在于分辨率。因此,在目标 1 中,我们将开发一个体素
肿瘤硬度的明智分类器。这一目标将建立在我们最近发表的基于神经网络的反演基础上
(NNI),它在模拟和反演中表现出了优于传统直接反演的性能
脑。在目标 1a 中,我们将通过实现更复杂的神经网络架构来推进 NNI
创建更真实的训练模拟。在目标 1b 中,进展将在模型中得到验证
刚度不均匀。最后,在目标 1c 中,在我们的神经外科合作者的帮助下,我们将收集
手术硬度评估的大样本。我们将使用这些评估来训练体素方面的刚度
分类器,然后将在单独的测试集中进行验证。这个目标将产生一张传达以下两个信息的地图:
预测的刚度和置信度对外科医生来说具有临床意义。
SII 最紧迫的局限性包括图像的主观解释和缺乏空间信息
解决了预测。目标 2 将通过开发体素滑动界面分类器来解决这些挑战。在
目标 2a,我们将研究基于神经网络的滑移界面预测器,以添加到我们当前的方法中。在
目标 2b,我们将评估这种新方法是否可以改进模型实验中的预测。在目标 2c 中,我们将
再次利用脑膜瘤依从性的手术评估来训练和测试体素分类器。这
这一目标的结果将是肿瘤粘附图,以易于解释的概率表示。
总而言之,这些目标将为神经外科医生提供临床重要信息,以改善患者的病情
管理。更广泛地说,该项目取得的技术进步将影响整个地雷危害教育领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Christopher Murphy其他文献
Matthew Christopher Murphy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Christopher Murphy', 18)}}的其他基金
Advancing MR elastography to map mechanical signatures of key AD/ADRD processes
推进 MR 弹性成像以绘制关键 AD/ADRD 过程的机械特征
- 批准号:
10585119 - 财政年份:2022
- 资助金额:
$ 35.78万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Promesa: Urban gardening and peer nutritional counseling to improve HIV care outcomes among people with food insecurity in the Dominican Republic
Promesa:城市园艺和同伴营养咨询可改善多米尼加共和国粮食不安全人群的艾滋病毒护理结果
- 批准号:
10698434 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
A place-based approach to geographic disparities in lung transplant
基于地点的肺移植地理差异方法
- 批准号:
10655779 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
2/2 Multi-Center CLEAN AIR 2 Randomized Control Trial in COPD
2/2 慢性阻塞性肺病多中心 CLEAN AIR 2 随机对照试验
- 批准号:
10722232 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别: