Integrating Air Pollution Prediction Models: Uncertainty Quantification and Propagation in Health Studies
整合空气污染预测模型:健康研究中的不确定性量化和传播
基本信息
- 批准号:9885918
- 负责人:
- 金额:$ 63.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-16 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAir PollutionAmericanAreaCaliberCessation of lifeCodeCommunicationCommunication ToolsDataData ScientistData SetDisabled PersonsElderlyEngineeringEnvironmental ExposureEpidemiologistExposure toFutureGoalsHealthHealth InsuranceHeterogeneityHospitalizationJointsLeadLocationLow incomeMedicareMedicare/MedicaidMethodologyMethodsModelingMonitorMorbidity - disease rateNew YorkOutcomeParticipantPatternPeer ReviewPerformancePoliciesPolicy MakerPopulationProviderRegulationReportingResearchResearch PriorityResolutionResource SharingRisk FactorsRuralSeasonsShapesSiteSoftware ToolsStatistical MethodsSystemTimeUncertaintyUnited StatesUnited States National Institutes of HealthVisualization softwareWorkambient air pollutionbasecohortdata sharingdisability-adjusted life yearsglobal environmentimprovedinnovationmortalitymortality risknovelopen dataopen sourceparticlepollutantpredictive modelingresponsespatiotemporaltool
项目摘要
Project Summary
Ambient air pollution is a global environmental threat, contributing to millions of deaths and hundreds of
millions of disability-adjusted-life-years (DALYs) annually. However, the major limitation of air pollution health
studies remains exposure assessment. Although there have been great advances in air pollution assessment
and several sophisticated spatio-temporal models have been developed to predict daily air pollution levels at
the residential addresses of study participants, the performance of these models varies in space and time.
Even the best on average performing prediction model, however, will have limited predictive ability in certain
space and time points. Furthermore, the uncertainty associated with use of a single prediction model has been
consistently ignored in health studies, which could lead to invalid inferences of the health effect estimates, and
inconsistent findings across studies. We propose to address this critical gap by developing a novel ensemble
model framework for exposure assessment in air pollution health studies, integrating information across
multiple existing prediction models. With this approach, we will for the first time be able to comprehensively
quantify any inter- and intra-model uncertainty associated with ambient air pollution exposures. We will develop
ensemble methods both for single- and multi-pollutant settings. We propose to apply the developed methods
and fully propagate exposure uncertainty in health effect estimation using two nationwide open cohorts, mainly
Medicare and Medicaid, as well as an open cohort of hospital admissions in New York State (Statewide
Planning and Research Cooperative System, SPARCS). These datasets provide information on approximately
all elderly, low-income and disabled Americans across the United States (Medicare and Medicaid,
respectively), with residential information the zip-code level, as well as 98% of all hospitalizations in NY State,
with information available at the residential address. Specifically we will assess the long- and short-term impact
of air pollution exposure on mortality (Medicare and Medicaid), and cardiorespiratory morbidity (all three
cohorts).We communicate the air pollution predictions, the spatio-temporal uncertainty of air pollution exposure
assessment and related health effect estimates to the public and regulatory agencies. The proposed novel
paradigm to assess air pollution exposures in health studies will greatly improve communication of exposure
uncertainty in the health effect estimates both to policy makers and the public, exactly responding to one of
NIH's priority research areas. Our tools can be easily extended and will benefit integration of information and
uncertainty characterization at different locations and at a global scale, as well as for other environmental
exposures.
项目摘要
环境空气污染是全球环境威胁,造成数百万死亡和数百人的死亡
每年数以百万计的残疾调整生活年度(达利人)。但是,空气污染健康的主要局限性
研究仍然是暴露评估。尽管空气污染评估取得了巨大进展
并且已经开发了几种复杂的时空模型,以预测每日空气污染水平
研究参与者的住宅讲话,这些模型的性能在时空和时间上有所不同。
但是,即使是最好的表现预测模型,在某些方面的预测能力也有限
空间和时间点。此外,使用单个预测模型相关的不确定性已经
在健康研究中始终被忽略,这可能导致对健康效应估计的无效推断,并且
整个研究的发现不一致。我们建议通过发展一个新颖的合奏来解决这一关键差距
在空气污染健康研究中进行暴露评估的模型框架,整合信息
多个现有的预测模型。通过这种方法,我们将第一次能够全面
量化与环境空气污染暴露相关的任何模型间和内部内部和内部的不确定性。我们将发展
单污染物和多污染物设置的集合方法。我们建议应用开发的方法
并完全使用两个全国性的公开群体来完全传播健康效应估计的暴露不确定性,主要是
Medicare和Medicaid,以及在纽约州的公开招生队列(全州
计划与研究合作系统,SPARCS)。这些数据集提供了有关的信息
全美的所有老年人,低收入和残疾美国人(Medicare和Medicaid,
分别),使用住宅信息,邮政编码水平以及纽约州所有住院的98%
在住宅地址可用的信息。具体而言,我们将评估长期和短期影响
死亡率(Medicare和Medicaid)和心肺发病率的空气污染暴露
队列)。我们传达空气污染预测,空气污染暴露的时空不确定性
评估和相关的健康效应估计对公众和监管机构。提出的小说
评估健康研究中空气污染暴露的范式将大大改善暴露的沟通
健康效应的不确定性对政策制定者和公众都估计,完全回应
NIH的优先研究领域。我们的工具很容易扩展,并将受益于信息集成和
在不同位置和全球范围以及其他环境的不确定性表征
暴露。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesca Dominici其他文献
Francesca Dominici的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesca Dominici', 18)}}的其他基金
CAFÉ: a Research Coordinating Center to Convene, Accelerate, Foster, and Expand the Climate Change and Health Community of Practice
CAF:一个研究协调中心,旨在召集、加速、培育和扩大气候变化与健康实践社区
- 批准号:
10689581 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
- 批准号:
10660281 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Augmented mapping of the Extreme Heat and Cold Events (EHE/ECE) at continental scale with cloud-based computing
利用基于云的计算对大陆范围内的极热和极冷事件 (EHE/ECE) 进行增强测绘
- 批准号:
10826885 - 财政年份:2022
- 资助金额:
$ 63.29万 - 项目类别:
The confluence of extreme heat cold on the health and longevity of an Aging Population with Alzheimers and related Dementia
极热寒冷对患有阿尔茨海默病和相关痴呆症的老年人口的健康和寿命的影响
- 批准号:
10448053 - 财政年份:2022
- 资助金额:
$ 63.29万 - 项目类别:
Relationship Between Multiple Environmental Exposures and CVD Incidence and Survival: Vulnerability and Susceptibility
多重环境暴露与 CVD 发病率和生存率之间的关系:脆弱性和易感性
- 批准号:
10163485 - 财政年份:2020
- 资助金额:
$ 63.29万 - 项目类别:
Integrating Air Pollution Prediction Models: Uncertainty Quantification and Propagation in Health Studies
整合空气污染预测模型:健康研究中的不确定性量化和传播
- 批准号:
10543137 - 财政年份:2020
- 资助金额:
$ 63.29万 - 项目类别:
Integrating Air Pollution Prediction Models: Uncertainty Quantification and Propagation in Health Studies
整合空气污染预测模型:健康研究中的不确定性量化和传播
- 批准号:
10330579 - 财政年份:2020
- 资助金额:
$ 63.29万 - 项目类别:
Relationship Between Multiple Environmental Exposures and CVD Incidence and Survival: Vulnerability and Susceptibility
多重环境暴露与 CVD 发病率和生存率之间的关系:脆弱性和易感性
- 批准号:
10058839 - 财政年份:2017
- 资助金额:
$ 63.29万 - 项目类别:
Relationship Between Multiple Environmental Exposures and CVD Incidence and Survival: Vulnerability and Susceptibility
多重环境暴露与 CVD 发病率和生存率之间的关系:脆弱性和易感性
- 批准号:
10310468 - 财政年份:2017
- 资助金额:
$ 63.29万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Determine the role of atmospheric particulate matter pollutants in contributing to Lewy Body Dementia
确定大气颗粒物污染物在路易体痴呆症中的作用
- 批准号:
10662930 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Wildfires and arrhythmias: evaluating associations and intervention strategies
野火和心律失常:评估关联和干预策略
- 批准号:
10861971 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
The Role of Air Quality and Built Environment in Social Isolation and Cognitive Function among Rural, Racially/Ethnically Diverse Residents at Risk for Alzheimer's Disease
空气质量和建筑环境对有阿尔茨海默病风险的农村、种族/民族多元化居民的社会隔离和认知功能的作用
- 批准号:
10740393 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别: