Developmental Progression Driving Gastrulation of the Drosophila Early Embryo
驱动果蝇早期胚胎原肠胚形成的发育进程
基本信息
- 批准号:9752601
- 负责人:
- 金额:$ 57.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-11 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAnimalsAutomobile DrivingBiological AssayBiological ModelsCell NucleusCell Signaling ProcessCellsChromatinDataDevelopmentDevelopmental ProcessDorsalDrosophila genusEmbryoEventExhibitsExpression ProfilingFibroblast Growth FactorGene ExpressionGene Expression ProfilingGenesGoalsHeparan Sulfate ProteoglycanIn Situ HybridizationMesoderm CellMethodsMolecularMolecular BiologyMolecular ConformationMorphogenesisMovementNeoplasm MetastasisPatternPropertyRegulationRegulator GenesRegulatory ElementResearchResolutionRoleSignal PathwaySignal TransductionSystemTimecell motilitycohesiondesigngastrulationgene conservationgene therapyimaging approachimaging modalityimprovedin vivoin vivo imaginginsightinterestmathematical modelmutantnew technologyprogramspublic health relevancespatiotemporaltranscription factor
项目摘要
DESCRIPTION (provided by applicant): The overlying goal of the proposed research program is to understand the molecular mechanisms that control gastrulation using the Drosophila embryo as a model system. In particular, we are interested in investigating how dorsal-ventral (DV) patterning and cell signaling processes are temporally regulated in the early embryo; in deciphering the cis-regulatory mechanisms controlling spatiotemporal gene expression; and studying how collective cell movements are orchestrated. These are inter-related questions that also are relevant for the development of all animals, and as such these studies have the potential to provide far-reaching insights. To assay progression of developmental events, we develop and employ novel technologies for making temporally relevant observations using live in vivo imaging, computation including mathematical modeling, and molecular biology. We have focused on the design and implementation of new imaging approaches that allow us to acquire fine-scale spatiotemporal data of developmental processes, to capture transcription factor dynamics as well as cell movements. Here we propose three research directions to provide further insight into the system of genes driving Drosophila gastrulation. Project 1 involves expansion of DV patterning network with a focus on the regulation of temporal expression. In the early embryo, we have found that transcription factors acting along the DV axis exhibit dynamic changes in levels. Expression profiles for putative target genes at multiple time-points spanning the early development will be obtained at single embryo resolution in wildtype versus mutant embryos to provide insight into how timing of expression is regulated by the gene network. Spatial expression of a subset of genes will be further investigated using in situ hybridization, and live imaging methods will be used to monitor gene expression in real-time. Project 2 will investigate the mechanism and role of coordinate cis-regulatory action using methods to analyze chromatin conformation in vivo within each nucleus of the embryo as well as assays to compare levels and timing of gene expression supported by co-acting cis-regulatory elements. Project 3 will investigate the function and regulation of FGF signaling in migrating cells. We hypothesize that FGF signaling modulates the adhesive properties of mesoderm cells at gastrulation to support their cohesive, organized movement. The role of heparan sulfate proteoglycan molecules and cleavage-state on FGF activity will also be investigated. The overlying goal of the proposed research program is to understand the molecular mechanisms controlling morphogenesis of the embryo through study of a network of genes that controls patterning, signaling pathway activation, and, ultimately, cell movements in the early Drosophila embryo. The conservation of gene regulatory mechanisms across all animals promises that these studies will have far reaching implications. In particular, a better understanding of cis-regulatory mechanisms, in general, has many benefits including improved, targeted gene therapy; while understanding how cell migration is controlled will provide insights toward the regulation of cell metastasis.
描述(由适用提供):拟议的研究计划的上覆的目标是了解使用果蝇胚胎作为模型系统控制过失的分子机制。特别是,我们有兴趣研究如何在早期胚胎中暂时调节背腹(DV)图案和细胞信号传导过程。在解密控制空间颞基因表达的顺式调节机制时;并研究集体细胞运动如何精心策划。这些是相互关联的问题,与所有动物的发展也相关,因此这些研究有可能提供深远的见解。为了测定发展事件的进展,我们开发了员工的新技术,用于使用活体内成像,包括数学建模和分子生物学的计算进行暂时相关的观察。我们专注于新成像方法的设计和实施,使我们能够获取发育过程的精细空间时间数据,以捕获转录因子动力学和细胞运动。在这里,我们提出了三个研究方向,以进一步了解驱动果蝇过度的基因系统。项目1涉及扩展DV模式网络,重点是调节临时表达。在早期胚胎中,我们发现沿DV轴作用的转录因子暴露了水平的动态变化。在跨越早期发育的多个时间点,假定靶基因的表达谱将在野生型和突变胚胎中的单个胚胎分辨率下获得,以提供有关如何受到基因网络调节表达时间的洞察力。将使用原位杂交进一步研究一部分基因的空间表达,实时成像方法将用于实时监测基因表达。项目2将使用方法来研究坐标顺式调节作用的机制和作用,以分析胚胎的每个核中的体内染色质构象,以及分析的测定方法,以比较共同作用CIS调控元件支持基因表达的水平和时间。项目3将研究迁移细胞中FGF信号传导的功能和调节。我们假设FGF信号传导调节中胚层细胞的粘附特性,以支持其凝聚力,有组织的运动。还将研究硫酸乙酰肝素蛋白聚糖分子和裂解状态在FGF活性中的作用。拟议的研究计划的上覆的目标是通过研究控制模式,信号通路激活的基因网络来了解控制胚胎形态发生的分子机制,并最终在早期的果蝇胚胎中的细胞运动。所有动物的基因调节机制的保护都承诺,这些研究将具有很大的影响。特别是,对顺式调节机制的更好理解,通常具有许多好处,包括改进的靶向基因疗法。同时了解细胞迁移的控制方式将为调节细胞转移提供见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angelike Stathopoulos其他文献
Angelike Stathopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angelike Stathopoulos', 18)}}的其他基金
Regulation of long distance enhancer-promoter interactions by promoter-proximal elements
启动子-近端元件对长距离增强子-启动子相互作用的调节
- 批准号:
10688129 - 财政年份:2022
- 资助金额:
$ 57.82万 - 项目类别:
Regulation of long distance enhancer-promoter interactions by promoter-proximal elements
启动子-近端元件对长距离增强子-启动子相互作用的调节
- 批准号:
10536568 - 财政年份:2022
- 资助金额:
$ 57.82万 - 项目类别:
Investigating how sequentially acting cues guide long-distance cell migration in vivo within embryos
研究顺序作用线索如何引导胚胎体内的长距离细胞迁移
- 批准号:
10458611 - 财政年份:2020
- 资助金额:
$ 57.82万 - 项目类别:
Investigating how sequentially acting cues guide long-distance cell migration in vivo within embryos
研究顺序作用线索如何引导胚胎体内的长距离细胞迁移
- 批准号:
10223395 - 财政年份:2020
- 资助金额:
$ 57.82万 - 项目类别:
Investigating reverse signaling by FGFs using an animal model system
使用动物模型系统研究 FGF 的反向信号传导
- 批准号:
10212438 - 财政年份:2020
- 资助金额:
$ 57.82万 - 项目类别:
Investigating how sequentially acting cues guide long-distance cell migration in vivo within embryos
研究顺序作用线索如何引导胚胎体内的长距离细胞迁移
- 批准号:
10667457 - 财政年份:2020
- 资助金额:
$ 57.82万 - 项目类别:
Mechanisms of Broadly-Expressed Repressors in Zygotic Gene Expression in an Animal Model
动物模型中合子基因表达中广泛表达的阻遏蛋白的机制
- 批准号:
9789684 - 财政年份:2018
- 资助金额:
$ 57.82万 - 项目类别:
Deciphering when the pivotal transcription factor Dorsal exerts patterning effects using optogenetics
利用光遗传学破译关键转录因子 Dorsal 何时发挥模式效应
- 批准号:
9612309 - 财政年份:2018
- 资助金额:
$ 57.82万 - 项目类别:
Temporal control of cell patterning, signaling, and movement in early embryos
早期胚胎细胞模式、信号传导和运动的时间控制
- 批准号:
10445335 - 财政年份:2016
- 资助金额:
$ 57.82万 - 项目类别:
Temporal control of cell patterning, signaling, and movement in early embryos
早期胚胎细胞模式、信号传导和运动的时间控制
- 批准号:
10670250 - 财政年份:2016
- 资助金额:
$ 57.82万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Generation of suturable artificial cornea from the integration of exfoliated graphene with gelatin glycidyl methacrylate
通过剥离石墨烯与明胶甲基丙烯酸缩水甘油酯的整合生成可缝合的人工角膜
- 批准号:
9976013 - 财政年份:2020
- 资助金额:
$ 57.82万 - 项目类别:
The bone marrow extracellular matrix: scaffold of hematopoiesis
骨髓细胞外基质:造血支架
- 批准号:
10084749 - 财政年份:2019
- 资助金额:
$ 57.82万 - 项目类别:
The bone marrow extracellular matrix: scaffold of hematopoiesis
骨髓细胞外基质:造血支架
- 批准号:
10576364 - 财政年份:2019
- 资助金额:
$ 57.82万 - 项目类别:
The bone marrow extracellular matrix: scaffold of hematopoiesis
骨髓细胞外基质:造血支架
- 批准号:
10861385 - 财政年份:2019
- 资助金额:
$ 57.82万 - 项目类别:
The bone marrow extracellular matrix: scaffold of hematopoiesis
骨髓细胞外基质:造血支架
- 批准号:
10338115 - 财政年份:2019
- 资助金额:
$ 57.82万 - 项目类别: