Ultrasound As a Physical Force for Enhanced Scaffold-Based Bone Repair
超声波作为增强支架骨修复的物理力量
基本信息
- 批准号:8638411
- 负责人:
- 金额:$ 16.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-17 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsBehaviorBeliefBone MarrowBone RegenerationBone TissueCalvariaCellsCeramicsClinicalCollagenConnecticutDefectDevelopmentEncapsulatedEngineeringExtracellular MatrixFractureFracture HealingGelGene ExpressionGoalsHealedHourHydrogelsImplantIn VitroIntentionLaboratoriesMarrowMeasurableMeasuresMechanical StimulationMechanicsModelingMolecularOsteoblastsOutputPhysiologic pulsePolymersPolystyrenesProcessPropertyProteinsRadiationRattusRegimenResearchResearch ProposalsScientistSkinStagingStem cellsSystemTechnologyTimeTissue EngineeringTransducersUltrasonographyUniversitiesUp-RegulationViscosityWorkbasebonecell behaviorclinical applicationclinically relevantdesignfluid flowhealingimplantationin vivonovelnovel strategiesosteoblast differentiationosteoprogenitor cellpublic health relevanceradiation effectrepairedresponsescaffoldstem cell differentiationtissue cultureviscoelasticity
项目摘要
Non-invasive, low-intensity pulsed ultrasound has been shown to be effective for transdermal treatment of
fresh fractures (38% reduction in clinical and radiographic healing time) and fracture nonunions, while less
effective for large scale segmental defects. The mechanism through which LIPUS acts is poorly understood,
which has weakened enthusiasm for widespread clinical use. Although the exact mechanism is not known, in
vitro cell studies have shown that osteoblasts respond to LIPUS exposure much the same as they respond to
various forms of mechanical loading, suggesting that LIPUS may impart a physical, acoustic radiation force on
cells to stimulate a response. Scaffold-based tissue engineering has also been proposed for the repair of
fractures but, unlike LIPUS, large-scale fracture non-unions and has been used clinically to a limited extent.
Each approach has its merits but to date have not been combined in a synergistic way; that is, LIPUS has not
been applied to implanted deformable hydrogels for bone defect repair. The goal of this proposal is to combine
LIPUS generated acoustic radiation force with hydrogel-based tissue engineering with the belief that both
approaches together will enhance repair over either approach alone. Using LIPUS-generated force capable of
imparting physical forces on cells, it is our intention to design hydrogel scaffolds that are 1) able to deliver
encapsulated viable cells in vivo, 2) be physically deflected by LIPUS generated acoustic radiation force after
implantation and during the healing process and 3) transfer the physical force from the hydrogel to
encapsulated cells to stimulate more rapid bone repair.
The objectives of the present research are 1) to evaluate the effect of LIPUS-induced acoustic radiation force
on rat marrow derived stem cells using three different acoustic radiation forces, 2) to evaluate the effect of
radiation force on cells encapsulated in collagen hydrogels of varying viscoelasticities to determine the
relationship between applied force and hydrogel viscosity on cell behavior, and 3) to use acoustic force applied
to hydrogels that have been loaded with cells and implanted in rat calvarial defects. Implanted hydrogels
containing cells will be loaded transdermally using LIPUS induced acoustic radiation force after implantation
into calvarial defects and during the healing process. It is anticipated that the parameters defined in the in vitro
studies will result in enhanced in vivo calvarial defect healing in hydrogels under acoustic radiation force when
compared to either hydrogels alone or acoustic radiation force alone.
非侵入性、低强度脉冲超声波已被证明可有效用于透皮治疗
新鲜骨折(临床和放射学愈合时间减少 38%)和骨折不愈合,同时减少
对大面积节段性缺损有效。 LIPUS 的作用机制尚不清楚,
这削弱了临床广泛使用的热情。虽然具体机制尚不清楚,但在
体外细胞研究表明,成骨细胞对 LIPUS 暴露的反应与它们对 LIPUS 暴露的反应大致相同。
各种形式的机械载荷,表明 LIPUS 可能会向物体施加物理声辐射力
细胞刺激反应。基于支架的组织工程也被提议用于修复
但与 LIPUS 不同的是,它可以治疗大面积骨折不愈合,并且在临床上的应用程度有限。
每种方法都有其优点,但迄今为止尚未以协同方式组合起来;也就是说,LIPUS 没有
已应用于植入可变形水凝胶以修复骨缺损。该提案的目标是结合
LIPUS 通过基于水凝胶的组织工程产生声辐射力,相信两者
与单独使用任何一种方法相比,联合使用这些方法将增强修复效果。使用 LIPUS 产生的力能够
对细胞施加物理力,我们的目的是设计水凝胶支架,其 1)能够传递
体内封装的活细胞,2) 被 LIPUS 产生的声辐射力物理偏转
植入和愈合过程中以及3)将物理力从水凝胶转移到
封装细胞刺激更快速的骨修复。
本研究的目的是 1) 评估 LIPUS 引起的声辐射力的影响
使用三种不同的声辐射力对大鼠骨髓干细胞进行实验,2) 评估
对封装在不同粘弹性胶原水凝胶中的细胞施加辐射力,以确定
施加的力和水凝胶粘度对细胞行为的关系,以及 3) 使用施加的声力
已装载细胞并植入大鼠颅骨缺损的水凝胶。植入水凝胶
植入后,将使用 LIPUS 诱导的声辐射力透皮加载含有细胞的细胞
颅骨缺损和愈合过程中。预计体外定义的参数
研究将导致水凝胶在声辐射力作用下增强体内颅骨缺损愈合
与单独的水凝胶或单独的声辐射力相比。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yusuf M Khan其他文献
Yusuf M Khan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yusuf M Khan', 18)}}的其他基金
Transdermal Mechanical Loading for Cell Therapy-Based Bone Repair
用于基于细胞疗法的骨修复的透皮机械加载
- 批准号:
10531606 - 财政年份:2018
- 资助金额:
$ 16.89万 - 项目类别:
Transdermal Mechanical Loading for Cell Therapy-Based Bone Repair
用于基于细胞疗法的骨修复的透皮机械加载
- 批准号:
10330538 - 财政年份:2018
- 资助金额:
$ 16.89万 - 项目类别:
Transdermal Mechanical Loading for Cell Therapy-Based Bone Repair
用于基于细胞疗法的骨修复的透皮机械加载
- 批准号:
9868891 - 财政年份:2018
- 资助金额:
$ 16.89万 - 项目类别:
相似国自然基金
多级结构纳米纤维基声学传感材料的构筑及其耦合谐振行为研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
地铁走行部轴承故障道旁诊断中的声学畸变行为及阵列补偿机制研究
- 批准号:52105098
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高声强下微穿孔蜂窝-波纹复合声学超材料非线性粘热吸声行为及结构优化设计技术
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
多孔沥青混合料细观孔隙特征和声学行为特性研究
- 批准号:51908058
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
芒灶螽属昆虫的系统发育、隐存物种多样性及其在洞穴生境中的声学行为研究
- 批准号:31702045
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
- 批准号:
10666001 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786355 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786256 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10483847 - 财政年份:2022
- 资助金额:
$ 16.89万 - 项目类别: