MOLECULAR MECHANISMS OF STRESS-INDUCED MUTATION
应激诱发突变的分子机制
基本信息
- 批准号:9751084
- 负责人:
- 金额:$ 50.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAntibiotic ResistanceAntibioticsAntineoplastic AgentsBacteriaCellsChemotherapy-Oncologic ProcedureCollaborationsDNADNA DamageDNA-Directed DNA PolymeraseEnvironmentEscherichia coliEvolutionGenesGeneticGenetic ModelsGenetic VariationGenomeGenomic InstabilityGenomic SegmentGenomicsGoalsHealthHumanInduced MutationInterventionLifeMalignant NeoplasmsMapsMedicalMicrobeModelingMolecularMutagenesisMutationPathogenesisPlantsProtein EngineeringReactionRegulationResistanceResistance developmentStarvationStressTimeTreesanti-cancerbiological adaptation to stresscancer cellcancer therapycombatflymicrobialnovel therapeuticspathogenrepairedresistance mechanismtooltumor progression
项目摘要
Genomic instability drives cancers, adaptation of pathogens to hosts, and evolution of resistance to anti-
pathogen and anti-cancer drugs. In contrast with classical assumptions that mutations occur purely
stochastically with constant and gradual rates, microbes, plants, flies and human cancer cells possess
mechanisms of mutagenesis upregulated by stress responses. Discovered in bacteria and similar across the
tree of life, these mechanisms generate transient bursts of genetic diversity that can propel evolution
specifically when cells are poorly adapted to their environments—when stressed. Stress-induced-mutation
mechanisms may provide superior models for genetic changes that drive pathogen-host adaptation, antibiotic
resistance, aging, cancer progression and therapy-resistance mechanisms, and possibly much of evolution
generally. This proposal addresses how stress responses upregulate mutagenesis, and how to stop them:
fundamental and medically urgent problems. We propose to investigate two stress-induced-mutation
mechanisms in E. coli: mutagenic DNA break repair (MBR), and mutagenesis induced by antibiotics: models
for mutagenesis in many medically critical contexts. Both require the general, stringent, and DNA-damage
stress responses, which allow error-prone DNA polymerases to promote mutations. Our approach will integrate
experimental genomic, genetic, synthetic and single-cell strategies with engineered proteins that trap DNA
reaction intermediates, all in living cells. We will address regulated mutagenesis from four directions:
· Discovery of how cells regulate MBR in time. Which gene(s) up- or down-regulated by the general
stress-response throw the switch to mutagenic break repair? By what mechanism? How does the stringent
stress response independently promote starvation- and antibiotic-induced MBR?
· Discovery of MBR regulation in single cells. Four stress responses promote MBR, some activated in
cell subpopulations. We will determine which subpopulations undergo mutagenesis and illuminate
differentiation into a mutable state—a possible evolutionary “bet hedging” strategy.
· Discovery of how cells restrict mutations in genomic space. We will map spontaneous DNA breaks in
genomes, and unravel their causes. We will discover whether more breaks, more break-repair, or other
causes target specific large genomic regions for multiple mutation hotspots.
· Antibiotic-induced mutagenesis. We will dissect a molecular mechanism of antibiotic-induced
mutagenesis similar to MBR. We will develop novel drugs to target mutagenesis as possible antibiotic
adjuncts, to slow evolution of pathogens, and as a model anti-cancer strategy.
This project includes collaborations with pioneering chemists, physicists, bioinformaticians, biochemists, and
molecular biologists. Our shared goal is to provide both important models for understanding of and
intervention in the medical problems listed above and specific tools for combating antibiotic resistance.
基因组不稳定性驱动器癌症,病原体对宿主的适应以及对抗抗性的抗性的演变
病原体和抗癌药。与纯粹发生突变发生的经典假设相反
随机地,恒定和等级速率,微生物,植物,苍蝇和人类癌细胞拥有
压力反应更新诱变的机制。在细菌中发现,在整个环境中相似
生命之树,这些机制产生了可以推动进化的遗传多样性的短暂爆发
压力诱导的妇女
机制可以为培养病原体宿主适应,抗生素的遗传变化提供卓越的模型
抗药性,衰老,癌症进展和耐药机制,可能是进化的大部分
一般来说。该提议解决了压力反应如何上调诱变,以及如何阻止它们:
基本和医学上的紧急问题。我们建议研究两个压力引起的妇女
大肠杆菌中的机制:诱变DNA断裂修复(MBR)和抗生素诱导的诱变:模型
在许多医学批判性环境中进行诱变。两者都需要一般,严格和DNA破坏
压力反应,允许容易出错的DNA聚合酶促进突变。我们的方法将整合
具有诱使DNA的工程蛋白质的实验基因组,遗传,合成和单细胞策略
反应中间,都在活细胞中。我们将从四个方向研究受管制的诱变:
·发现细胞如何调节MBR的时间。哪个基因被一般或下调
应力反应将转换转换为诱变断裂修复?通过什么机制?严格如何
压力反应独立促进饥饿和抗生素诱导的MBR?
发现单细胞中MBR调节。四个压力反应促进MBR,其中一些被激活
细胞亚群。我们将确定哪些亚群经历诱变并照明
分化为可变状态,这是一种可能的进化“押注”策略。
发现细胞如何限制基因组空间中的突变。我们将绘制赞助的DNA断裂
基因组,并揭示其原因。我们将发现更多的断裂,更多的分手或其他
导致针对多个突变热点的特定特定大基因组区域。
抗生素诱导的诱变。我们将剖析抗生素诱导的分子机制
诱变类似于MBR。我们将开发新的药物以靶向诱变作为可能的抗生素
辅助,以减慢病原体的发展和作为模型抗癌策略。
该项目包括与开创性化学家,物理学家,生物信息学家,生物化学家和
分子生物学家。我们的共同目标是提供理解和了解的重要模型
干预上面列出的医疗问题以及打击抗生素耐药性的特定工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan M Rosenberg其他文献
Susan M Rosenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan M Rosenberg', 18)}}的其他基金
Harnessing Proteins as Drugs: the Protectome of Cancer- and Aging-Prevention Proteins
利用蛋白质作为药物:抗癌和抗衰老蛋白质的保护组
- 批准号:
10012551 - 财政年份:2020
- 资助金额:
$ 50.78万 - 项目类别:
Forward Genomics of Damage Control: An Undiscovered Class of Cancer Genes
损伤控制的正向基因组学:一类未被发现的癌症基因
- 批准号:
8517059 - 财政年份:2009
- 资助金额:
$ 50.78万 - 项目类别:
Molecular mechanisms of stress-induced mutation in E. coli
大肠杆菌应激突变的分子机制
- 批准号:
7911153 - 财政年份:2009
- 资助金额:
$ 50.78万 - 项目类别:
Forward Genomics of Damage Control: An Undiscovered Class of Cancer Genes
损伤控制的正向基因组学:一类未被发现的癌症基因
- 批准号:
8322231 - 财政年份:2009
- 资助金额:
$ 50.78万 - 项目类别:
Forward Genomics of Damage Control: An Undiscovered Class of Cancer Genes
损伤控制的正向基因组学:一类未被发现的癌症基因
- 批准号:
7938886 - 财政年份:2009
- 资助金额:
$ 50.78万 - 项目类别:
Forward Genomics of Damage Control: An Undiscovered Class of Cancer Genes
损伤控制的正向基因组学:一类未被发现的癌症基因
- 批准号:
8134368 - 财政年份:2009
- 资助金额:
$ 50.78万 - 项目类别:
Forward Genomics of Damage Control: An Undiscovered Class of Cancer Genes
损伤控制的正向基因组学:一类未被发现的癌症基因
- 批准号:
8316357 - 财政年份:2009
- 资助金额:
$ 50.78万 - 项目类别:
Forward Genomics of Damage Control: An Undiscovered Class of Cancer Genes
损伤控制的正向基因组学:一类未被发现的癌症基因
- 批准号:
7845984 - 财政年份:2009
- 资助金额:
$ 50.78万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Water Emergency Team (WET): Community-Driven Rapid Response Team to Evaluate Antibiotic-Resistant Bacteria Exposures and Household Environmental Health Risks from Sewer Overflows and Basement Flooding
水应急小组 (WET):社区驱动的快速响应小组,评估下水道溢出和地下室洪水导致的抗生素耐药细菌暴露和家庭环境健康风险
- 批准号:
10686675 - 财政年份:2023
- 资助金额:
$ 50.78万 - 项目类别:
Development and optimization of a nitric oxide releasing microparticle-basedtopical treatment for onychomycosis
基于一氧化氮释放微粒的甲癣局部治疗方法的开发和优化
- 批准号:
10686200 - 财政年份:2022
- 资助金额:
$ 50.78万 - 项目类别:
Development and optimization of a nitric oxide releasing microparticle-basedtopical treatment for onychomycosis
基于一氧化氮释放微粒的甲癣局部治疗方法的开发和优化
- 批准号:
10547384 - 财政年份:2022
- 资助金额:
$ 50.78万 - 项目类别:
Lysterases as first-in-class prophylactic topical antimicrobials to prevent postsurgical shoulder infections
莱斯特酶作为一流的预防性局部抗菌剂,可预防术后肩部感染
- 批准号:
10080363 - 财政年份:2020
- 资助金额:
$ 50.78万 - 项目类别:
Supplement to Chemical Biology Studies of the Dynamics and Inhibition of Peptidoglycan Biosynthesis
肽聚糖生物合成动力学和抑制的化学生物学研究的补充
- 批准号:
10609340 - 财政年份:2020
- 资助金额:
$ 50.78万 - 项目类别: