Inference of variable chromatin loops in glioblastoma tumors and single-cells
胶质母细胞瘤和单细胞中可变染色质环的推断
基本信息
- 批准号:9751627
- 负责人:
- 金额:$ 2.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAddressBinomial ModelBioinformaticsBiologicalBiological AssayBiologyCancer BiologyCarcinogenesis MechanismCell LineCell NucleusCellsCellular AssayChromatinChromatin Interaction Analysis by Paired-End Tag SequencingChromatin LoopChromatin StructureClinicalComputational TechniqueComputer softwareComputing MethodologiesDNADNA FoldingDNA mappingDataDimensionsDoctor of PhilosophyEpigenetic ProcessFutureGenesGeneticGenomeGenomicsGlioblastomaGoalsHairHeterogeneityHumanIn SituIndividualInter-tumoral heterogeneityIsocitrate DehydrogenaseLinkMalignant NeoplasmsMalignant neoplasm of brainMapsMeasuresMethodologyMethodsModelingMutationNuclearOncogene ActivationOncogenicOutcomePDGFRA genePatientsPatternPhenotypePopulationResearchResearch PersonnelRoleSelf CareShapesStructureTechniquesTechnologyTrainingTransposaseVariantWidthWorkbioinformatics toolcancer typechromosome conformation captureclinical phenotypecomputer frameworkdesigndifferential expressionexperienceflexibilityfootgenome-widegenome-wide analysishuman diseaseimplicit biasimprovedinsightinterestmutantpersonalized caresingle-cell RNA sequencingtherapeutic developmenttherapy resistantthree dimensional structuretooltranscriptometranscriptomicstreatment strategytumortumor heterogeneity
项目摘要
Project Summary
A common feature in most cancers is both inter- (between patients) and intra- (within a patient) tumor
heterogeneity. An important step toward improving treatment strategies and enabling personal care is mapping
how these types of heterogeneity impact clinical phenotypes, especially among deadly tumors such as
glioblastoma multiform (GBM). Recent studies have identified instances where the three-dimensional folding of
chromatin into DNA loops is associated with inter-tumor heterogeneity. Presently, intra-tumor DNA looping
variability has not been measured though this is likely responsible for single-cell transcriptional differences
observed within patient tumors.
To identify DNA loops genome wide, many chromatin conformation capture (3C)-derived assays have
been developed. However, reliably using DNA loops to uncover tumor heterogeneity is hindered by two key
deficiencies. First, a direct comparison of 3C-derived techniques has not been conducted to assess assay-
specific biases in identifying inter-tumor variable DNA loops. Second, each of these approaches requires
millions of cells to infer chromatin structure, obscuring differences at the single-cell level. Here, I propose
methodological advances to address these two deficiencies through computational approaches that will
elucidate the role of DNA looping in inter- and intra- tumor heterogeneity in GBM.
In Aim 1, I will use data generated in my sponsor's lab for three different 3C-derived methods mapping
DNA loops in isocitrate dehydrogenase (IDH) mutant and wildtype glioblastoma cell lines. I will identify biases
specific to each assay and determine differential loops associated with the IDH mutation. This work will be
critical for developing future computational techniques for identifying important DNA loops. Moreover, this
analysis will reveal the epigenetic effects of the IDH mutation, which is prevalent in GBM and other cancers
(e.g. acute myeloid leukemia). Results from this aim will be broadly applicable to bioinformatics researchers
developing tools for DNA looping data as well as cancer biologists seeking to understand the IDH mutation.
In Aim 2, I propose to resolve single-cell differences in the same glioblastoma cell lines to infer patterns
of chromatin loop variability within individual tumors. Specifically, I will build a computational framework
integrating DNA loops nominated by bulk populations with single-cell chromatin accessibility (scATAC-seq)
data. I will work with the inventor of the scATAC-seq technology to develop a sensitive, zero-inflated model to
identify chromatin loops that are variable within individual GBM tumor models.
The research results from this proposal will yield critical insights into chromatin biology associated with
tumor heterogeneity of GBM and other cancers, which will motivate future therapeutic development strategies.
项目概要
大多数癌症的一个共同特征是肿瘤间(患者之间)和肿瘤内(患者内部)
异质性。改善治疗策略和实现个人护理的重要一步是绘制地图
这些类型的异质性如何影响临床表型,特别是在致命的肿瘤中,例如
多形性胶质母细胞瘤(GBM)。最近的研究已经确定了三维折叠的实例
染色质进入 DNA 环与肿瘤间异质性相关。目前,肿瘤内DNA循环
尚未测量变异性,但这可能是单细胞转录差异的原因
在患者肿瘤内观察到。
为了在全基因组范围内识别 DNA 环,许多染色质构象捕获 (3C) 衍生的检测已
已开发。然而,可靠地使用 DNA 环来揭示肿瘤异质性受到两个关键因素的阻碍
的不足。首先,尚未对 3C 衍生技术进行直接比较来评估测定-
识别肿瘤间可变 DNA 环的特定偏差。其次,每种方法都需要
数百万个细胞来推断染色质结构,模糊了单细胞水平的差异。在此,我建议
通过计算方法解决这两个缺陷的方法论进步
阐明 DNA 环在 GBM 肿瘤间和肿瘤内异质性中的作用。
在目标 1 中,我将使用赞助商实验室生成的数据进行三种不同的 3C 衍生方法映射
异柠檬酸脱氢酶 (IDH) 突变体和野生型胶质母细胞瘤细胞系中的 DNA 环。我会识别偏见
针对每个检测并确定与 IDH 突变相关的差异环。这项工作将是
对于开发未来识别重要 DNA 环的计算技术至关重要。而且,这
分析将揭示 IDH 突变的表观遗传效应,该突变在 GBM 和其他癌症中普遍存在
(例如急性髓性白血病)。该目标的结果将广泛适用于生物信息学研究人员
开发 DNA 循环数据工具以及寻求了解 IDH 突变的癌症生物学家。
在目标 2 中,我建议解决相同胶质母细胞瘤细胞系中的单细胞差异以推断模式
单个肿瘤内染色质环的变异性。具体来说,我将构建一个计算框架
将大量群体指定的 DNA 环与单细胞染色质可及性整合 (scATAC-seq)
数据。我将与 scATAC-seq 技术的发明者合作开发一个灵敏的零膨胀模型
识别个体 GBM 肿瘤模型中可变的染色质环。
该提案的研究结果将对与染色质相关的生物学产生重要的见解
GBM 和其他癌症的肿瘤异质性,这将激发未来的治疗开发策略。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
hichipper: a preprocessing pipeline for calling DNA loops from HiChIP data.
- DOI:10.1038/nmeth.4583
- 发表时间:2018-02-28
- 期刊:
- 影响因子:48
- 作者:Lareau, Caleb A.;Aryee, Martin J.
- 通讯作者:Aryee, Martin J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caleb Andrew Lareau其他文献
Caleb Andrew Lareau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caleb Andrew Lareau', 18)}}的其他基金
Charting somatic evolution via single-cell multiomics
通过单细胞多组学绘制体细胞进化图
- 批准号:
10909474 - 财政年份:2023
- 资助金额:
$ 2.65万 - 项目类别:
Charting somatic evolution via single-cell multiomics
通过单细胞多组学绘制体细胞进化图
- 批准号:
10506162 - 财政年份:2022
- 资助金额:
$ 2.65万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Evaluating Rental Relief During the COVID-19 Pandemic
评估 COVID-19 大流行期间的租金减免
- 批准号:
10646597 - 财政年份:2023
- 资助金额:
$ 2.65万 - 项目类别:
Role of Geography on Alzheimer’s Disease and Related Dementias in Central Appalachia
地理对阿巴拉契亚中部阿尔茨海默病和相关痴呆症的影响
- 批准号:
10681309 - 财政年份:2022
- 资助金额:
$ 2.65万 - 项目类别:
Multivariate spatiotemporal models to quantify disparities in COVID-19 health outcomes
用于量化 COVID-19 健康结果差异的多元时空模型
- 批准号:
10706489 - 财政年份:2022
- 资助金额:
$ 2.65万 - 项目类别:
Role of Geography on Alzheimer’s Disease and Related Dementias in Central Appalachia
地理对阿巴拉契亚中部阿尔茨海默病和相关痴呆症的影响
- 批准号:
10509690 - 财政年份:2022
- 资助金额:
$ 2.65万 - 项目类别:
Multivariate spatiotemporal models to quantify disparities in COVID-19 health outcomes
用于量化 COVID-19 健康结果差异的多元时空模型
- 批准号:
10527208 - 财政年份:2022
- 资助金额:
$ 2.65万 - 项目类别: