Activity-Dependent Cellular and Molecular Events Regulating Memory
调节记忆的活动依赖性细胞和分子事件
基本信息
- 批准号:9749990
- 负责人:
- 金额:$ 38.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-23 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgonistAnatomyBehavioral ParadigmBindingBiologyCREB1 geneCell NucleusClinicalComplexDataDependenceDiseaseDissectionDominant-Negative MutationEpigenetic ProcessEventExhibitsFGF1 geneGene TargetingGenesGeneticGenetic ModelsGenetic TranscriptionHealthHippocampus (Brain)Histone AcetylationHumanInjectionsKnowledgeLeadLearningMaintenanceMediatingMemoryMemory LossMessenger RNAMicrotubulesModelingModificationMolecularMolecular AnalysisMolecular ProbesMusNeurobiologyNuclear TranslocationPathway interactionsPlayPositioning AttributePost-Translational Protein ProcessingProcessProtocols documentationPsyche structureRNA InterferenceRegulationRoleShockSignal PathwaySignal TransductionSynapsesSystemTestingTherapeuticTrainingTranscription CoactivatorTranscriptional RegulationWorkcofactorcombatconditioned feardentate gyrusexperiencegain of functionhealthy aginghistone modificationimprovedinhibitor/antagonistinsightlong term memoryloss of functionmutantneural circuitneurocognitive disordernovelnucleocytoplasmic transportobject recognitionpromoterreceptorresponsescreeningsocialstrength trainingtranscription factorwater maze
项目摘要
Activity-dependent Cellular and Molecular Events Regulating Memory
Project Summary
Activity-regulated signaling pathways, by transmitting information regarding synaptic inputs to the nucleus and
regulating gene transcription, play a vital role in memory. Knowing these processes would benefit the
approaches to improve memory. Still, our understanding of the molecular mechanisms that mediate synapse-
to-nucleus signaling remains surprisingly incomplete. In particular, details of how synaptically localized
transcriptional modulators are transported to the nucleus, activate the transcriptional machinery, their target
genes and the neural circuits they serve on are too poorly understood to be harnessed for therapeutic
applications. We propose to address this knowledge gap from a new angle that features a behavioral paradigm
with various training strength, mutants that activate or inhibit gene transcription, epigenetic analysis, and gene
screening. We have developed a training model in the mouse that uniquely positions us to address three aims
that together will markedly advance understanding of the fundamental biology of learning-dependent
intracellular signaling.
Aim 1 will: a) test the molecular mechanism of learning-dependent synapse-to-nucleus transport in the
hippocampus following various strength of training, and b) address potential requirements for transcriptional
activity using mutants that inhibit or activate transcription. Accomplishment of the proposed work will define the
signaling pathways that mediate training responses in gene transcription, establishing the mechanistic
framework for analysis of molecular and cellular changes following various strength of training, and contributing
an overview of signaling pathway requirements in various memory paradigms that are dependent on the
hippocampus.
Aim 2 will define the impact of binding between transcriptional activators and changes in histone modifications
in response to various strength of training and various transcriptional mutants while addressing the overall
hypothesis that epigenetic modifications reflect the transcriptional machinery specific to their corresponding
anatomic circuits. We will conduct a detailed analysis of binding between transcriptional cofactors depending
on their posttranslational modifications. We will use mutant transcriptional inhibitors and activators to define
their role in epigenetic modifications.
Aim 3 will characterize specific gene targets of inducible transcriptional coactivators, epigenetic changes on
their specific promoters following training with various strength and analyze how these changes affected by
mutant transcriptional inhibitors and activators. We will examine in detail the role of these novel gene targets in
memory and in particular in enhancement of memory strength.
Given unequivocal evidence that memory strength is critical for healthy maintenance, molecular and neural
circuitry dissection of learning-dependent mechanisms connecting synapses to the nucleus and gene targets
induced by these processes should yield new insights that guide strategies for improving memory strength and
human health.
调节记忆的活动依赖性细胞和分子事件
项目概要
活动调节信号通路,通过将有关突触输入的信息传递到细胞核和
调节基因转录,在记忆中发挥至关重要的作用。了解这些过程将有利于
提高记忆力的方法。尽管如此,我们对介导突触的分子机制的理解 -
令人惊讶的是,到核的信号传导仍然不完整。特别是突触定位的细节
转录调节剂被转运到细胞核,激活转录机制,其目标
对基因及其所服务的神经回路知之甚少,无法用于治疗
应用程序。我们建议从一个以行为范式为特征的新角度来解决这一知识差距
具有各种训练强度、激活或抑制基因转录的突变体、表观遗传分析和基因
筛选。我们开发了一种小鼠训练模型,使我们能够独特地实现三个目标
这些共同将显着促进对学习依赖的基本生物学的理解
细胞内信号传导。
目标 1 将:a) 测试学习依赖性突触到细胞核运输的分子机制
b) 处理转录的潜在要求
使用抑制或激活转录的突变体的活性。拟议工作的完成将确定
介导基因转录训练反应的信号通路,建立机制
分析不同强度训练后分子和细胞变化的框架,并做出贡献
各种记忆范例中依赖于的信号通路要求的概述
海马体。
目标 2 将定义转录激活因子之间的结合和组蛋白修饰变化的影响
响应各种强度的训练和各种转录突变体,同时解决总体问题
假设表观遗传修饰反映了其相应的特定转录机制
解剖电路。我们将对转录辅助因子之间的结合进行详细分析,具体取决于
关于它们的翻译后修饰。我们将使用突变转录抑制剂和激活剂来定义
它们在表观遗传修饰中的作用。
目标 3 将表征诱导转录共激活因子的特定基因靶标、表观遗传变化
他们的具体推动者经过不同强度的训练,并分析这些变化是如何影响的
突变转录抑制剂和激活剂。我们将详细研究这些新基因靶标在
记忆力,特别是增强记忆力。
鉴于明确的证据表明记忆强度对于维持健康至关重要,分子和神经
连接突触与细胞核和基因靶标的学习依赖机制的电路剖析
这些过程引起的应该会产生新的见解,指导提高记忆强度和
人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GLEB P SHUMYATSKY其他文献
GLEB P SHUMYATSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GLEB P SHUMYATSKY', 18)}}的其他基金
Activity-Dependent Cellular and Molecular Events Regulating Memory
调节记忆的活动依赖性细胞和分子事件
- 批准号:
9239107 - 财政年份:2016
- 资助金额:
$ 38.75万 - 项目类别:
Activity-Dependent Cellular and Molecular Events Regulating Memory
调节记忆的活动依赖性细胞和分子事件
- 批准号:
9357732 - 财政年份:2016
- 资助金额:
$ 38.75万 - 项目类别:
The role of GRP and GRPergic circuitry in fear memory
GRP 和 GRPgic 电路在恐惧记忆中的作用
- 批准号:
7728697 - 财政年份:2009
- 资助金额:
$ 38.75万 - 项目类别:
The role of GRP and GRPergic circuitry in fear memory
GRP 和 GRPgic 电路在恐惧记忆中的作用
- 批准号:
7911898 - 财政年份:2009
- 资助金额:
$ 38.75万 - 项目类别:
相似国自然基金
β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境激素壬基酚对变应性鼻炎的影响及其对GPER特异性激动剂G-1在变应性鼻炎治疗作用中的干扰机制研究
- 批准号:82000963
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
促生长激素释放激素激动剂抑制平滑肌细胞转分化对动脉粥样硬化的影响及机制研究
- 批准号:81900389
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
五羟色胺2C受体激动剂对2型糖尿病小鼠β细胞功能的影响及机制研究
- 批准号:81803644
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
cAMP信号激动剂对恶性胶质瘤血管新生和血管正常化的影响及机制研究
- 批准号:81803568
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Targeting Trained Immunity in Trauma-Induced Immune Dysregulation
针对创伤引起的免疫失调中训练有素的免疫力
- 批准号:
10714384 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别: