Rhes-SUMO circuitry in Huntington's Disease Pathogenesis
亨廷顿病发病机制中的 Rhes-SUMO 电路
基本信息
- 批准号:9006888
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-15 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAutophagocytosisBehaviorBehavioralBindingBiochemicalBiochemistryBiological AssayBiologyBody WeightBrainCell Culture TechniquesCellsCellular biologyCessation of lifeCognitiveCorpus striatum structureDataDefectDeteriorationDevelopmentDiseaseDisease modelDrug TargetingDyskinetic syndromeEtiologyFunctional disorderGene ExpressionGenesGeneticGlutamineGoalsGuanosine Triphosphate PhosphohydrolasesHereditary DiseaseHomologous GeneHumanHuntington DiseaseHuntington geneIn VitroKnockout MiceKnowledgeKyphosis deformity of spineLimb structureMammalsMediatingMissionMitochondriaMolecularMorphologyMusNeurodegenerative DisordersNeuronsOutcomePainPathogenesisPathway interactionsPeripheralPersonalityPharmaceutical PreparationsPhenotypePhysiologicalPlayPreventionPreventiveProcessProteinsProteomicsPublic HealthPublishingResearchRoleSignal TransductionSpecificityStaining methodStainsTechniquesTestingTherapeuticTissuesToxic effectTransgenic OrganismsWorkbasecognitive functiondisabilitydisease phenotypein vivoinnovationinsightinterdisciplinary approachmitochondrial dysfunctionmotor controlmouse modelmutantneuron lossnovelnovel therapeuticsopen field behaviorparalogous genepolyglutaminepreventpublic health relevancereconstitutionsymptom treatmenttoolubiquitin-protein ligase
项目摘要
DESCRIPTION (provided by applicant): Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine repeat in the protein huntingtin (mHtt), and is manifested by choreatic dyskinesias, personality changes, abnormal behaviors and cognitive deterioration. With the exception of symptomatic treatments there are no disease-modifying therapies for HD. Although mHtt is expressed ubiquitously in brain and peripheral tissue, it predominantly causes neuronal loss and damage in striatal tissue, a process that is poorly understood. Therefore, studies that define the mechanisms that contribute to the striatal degeneration are needed to develop new drugs that prevent and/or delay the onset of HD. Our long-term goal is to understand the role of striatal-specific proteins in HD pathogenesis for preventive and therapeutic purposes. The objective here, which is next step in pursuit of that goal, is to dissect the mechanisms of Rhes GTPase, that contains SUMO E3 ligase activity, in HD pathogenesis, and to identify its physiological SUMO substrates. Our central hypothesis is that Rhes-SUMO1-mHtt-mTORC1 circuitry elicits mitochondrial damage and HD pathogenesis. This hypothesis is formulated on the basis of our previous studies, new data and preliminary results. Our Aims are: 1: Dissect the role of Rhes-SUMO-mHtt-mTORC1 circuitry in mitochondrial dysfunction. Multiple studies support the role of Rhes in HD, but the mechanisms are unknown. Here we will dissect the mechanisms, using striatal cells, focusing on the Rhes-SUMO1 in mTORC1 activity and mitochondrial dysfunction; and 2: Challenge the deletion of SUMO1 in the amelioration of HD pathogenesis in mice. Despite known roles for SUMO1 in mHtt-induced cellular toxicity, its role in the pathogenesis of HD in mammal remains unknown. We will cross SUMO1-/- mice with N171HD mouse to elucidate behavioral and pathological outcomes; and 3: Identify SUMOylation substrates for Rhes. Besides SUMOylating mHtt, Rhes physiologically SUMOylates several striatal proteins, but their identity remains unknown. Using cell culture, in vitro SUMOylation assay, and proteomic approaches we will identify potential SUMO substrates for Rhes. Overall, the project is innovative because it employs an interdisciplinary approach, utilizing tools from mouse genetics, cell biology, biochemistry, and behavior to dissect the pathway leading to striatal-specific cell loss. The results of this project
will be significant, as it will advance our understanding of why striatal tissue is preferentially ost in an mHtt- dependent fashion and provide proof-of-principle for the development of drugs targeting Rhes signaling in HD.
描述(由适用提供):亨廷顿疾病(HD)是一种常染色体显性神经退行性疾病,是由蛋白质亨廷顿蛋白(MHTT)中多谷氨酰胺重复膨胀引起的,并且由脉络化性运动障碍表现出来,由人格变化,人格变化,异常行为和认知能力确定。除症状治疗外,没有针对HD的疾病改良疗法。尽管MHTT在脑和周围组织中普遍存在,但它主要导致纹状体组织的神经元丧失和损害,这一过程知之甚少。因此,需要进行定义有助于纹状体变性的机制的研究,以开发预防和/或延迟HD发作的新药物。我们的长期目标是了解纹状体特异性蛋白在HD发病机理中的作用,以进行预防和治疗目的。这是追求该目标的下一步的目的是剖析rhes gtpase的机制,该机理包含SUMO E3连接酶活性,HD发病机理,并识别其物理EMO底物。我们的中心假设是Rhes-Sumo1-MHTT-MTORC1电路会引起线粒体损伤和HD发病机理。该假设是根据我们先前的研究,新数据和初步结果提出的。我们的目标是:1:剖析线粒体功能障碍中Rhes-Sumo-MHTT-MTORC1电路的作用。多项研究支持Rhes在HD中的作用,但是这些机制尚不清楚。在这里,我们将使用纹状体细胞解剖机制,重点是MTORC1活性和线粒体功能障碍中的Rhes-Sumo1。和2:挑战SUMO1在小鼠中HD发病机理改善中的缺失。尽管已知SUMO1在MHTT诱导的细胞毒性中的作用已知,但其在HD发病机理中的作用仍然未知。我们将用N171HD小鼠穿越SUMO1 - / - 小鼠,以阐明行为和病理结果。和3:确定恒星的sumoylation底物。除了sumoylating MHTT外,Rhes还可以物理地覆盖几种纹状体蛋白,但它们的身份仍然未知。使用细胞培养,体外sumoylation分析和蛋白质组学方法,我们将确定恒星的潜在相扑底物。总体而言,该项目具有创新性,因为它采用了跨学科方法,使用小鼠遗传学,细胞生物学,生物化学和行为的工具来剖析导致纹状体特异性细胞损失的途径。这个项目的结果
将是重要的,因为它将促进我们对为什么纹状体组织以MHTT依赖性方式更有可能OST的理解,并为靶向HD中Rhes信号的药物的开发提供原则证明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasa Subramaniam其他文献
Srinivasa Subramaniam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasa Subramaniam', 18)}}的其他基金
Validating cGAS-STING pathway as drug target in Huntington disease mouse model
在亨廷顿病小鼠模型中验证 cGAS-STING 通路作为药物靶点
- 批准号:
10508092 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
mTOR Signaling in Striatum: Regulation and Function
纹状体中的 mTOR 信号传导:调节和功能
- 批准号:
9174387 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
mTOR Signaling in Striatum: Regulation and Function
纹状体中的 mTOR 信号传导:调节和功能
- 批准号:
8883032 - 财政年份:2015
- 资助金额:
$ 42万 - 项目类别:
mTOR Signaling in Striatum: Regulation and Function
纹状体中的 mTOR 信号传导:调节和功能
- 批准号:
9282509 - 财政年份:2015
- 资助金额:
$ 42万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Signaling and metabolic functions of nSMase-2 in hepatic steatosis and onset of insulin resistance
nSMase-2 在肝脂肪变性和胰岛素抵抗发作中的信号传导和代谢功能
- 批准号:
10735117 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Nutrient-sensor O-GlcNAc Transferase Regulation of Autophagy in Homeostatis of Pancreatic Beta-cell Mass and Function
营养传感器 O-GlcNAc 转移酶对胰腺 β 细胞质量和功能稳态中自噬的调节
- 批准号:
10907874 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Role of Selective Autophagy of Focal Adhesion in Intracranial Aneurysm
局部粘连选择性自噬在颅内动脉瘤中的作用
- 批准号:
10586692 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别: