A Human Pluripotent Stem Cell Model for Elucidating Cell Fate Defects in McCune-Albright Syndrome

用于阐明 McCune-Albright 综合征细胞命运缺陷的人类多能干细胞模型

基本信息

项目摘要

Project Summary: G-protein coupled receptor (GPCR) signaling pathways mediate a wide spectrum of biological activities in humans. McCune-Albright Syndrome (MAS) is a mosaic disease caused by a somatic activating mutation in the GNAS gene (c.602G>A, p.R201H). The GNAS complex locus encodes the stimulatory alpha subunit of the guanine nucleotide binding protein (Gsα) and regulates production of cAMP. MAS is characterized by the classic triad of polyostotic fibrous dysplasia, café-au-lait skin lesions, and precocious puberty. It can also cause hyperthyroidism, Cushing’s disease, acromegaly, and malignancies of the thyroid, pituitary and pancreas. The R201H mutation is thought to occur post-zygotically since tissues from all 3 germ layers can be affected. There is no known vertical transmission of MAS in humans; therefore, germline mutations are thought to be embryonically lethal; however, the precise mechanism leading to lethality is not fully understood. There is emerging literature suggesting that GPCR signaling pathways play a role in early development and stem cell fate, and we hypothesize that the early lethality seen in MAS may be a consequence of over-activation of the Gs-signaling pathway which may create a critical block in the development of certain cell lineages. Unfortunately, our ability to study this mechanism further is hampered by our lack of animal models carrying the GNAS R201H mutation in the endogenous locus. We propose developing a novel, robust human model of MAS using induced pluripotent stem cells (iPSCs) to explore how activated GNAS and elevated cAMP levels affect stem cell fate and lineage commitment in MAS. First, we will test how increased cAMP levels, pharmacologically induced by forskolin, affect pluripotency and lineage commitment in control human iPSCs. Next, we will create a human model of MAS by introducing the R201H mutation into control iPSCs at the endogenous locus using CRISPR/Cas9 gene-editing techniques. We will then compare these two models and examine whether pharmacologically-induced and R201H mutation-induced cAMP activation have similar effects on iPSC pluripotency and lineage commitment. We will then differentiate our engineered R201H iPSCs into osteogenic precursors and examine the effect of the mutation on osteoblast commitment and maturation. Our results will provide insight into the potential mechanisms contributing to early cell fate changes and embryonic lethality in MAS. This new knowledge will guide future studies in mature cell types that can be generated from iPSCs, including adrenal cortical cells, pituitary cells, and pancreatic ductal cells. As GPCR signaling pathways mediate many critical biological activities in the human body, this model will support the study of Gs-signaling in other tissues and diseases. The results of our current study will also be critical for developing screening tools and identifying key endpoints for GNAS-specific high-throughput drug screens. Finally, this training plan will help the candidate gain the necessary skills to apply for a NIH K08 award and develop into an independent translational clinician-scientist in the field of endocrinology.
项目摘要: G蛋白偶联受体(GPCR)信号通路介导了广泛的生物学活性 人类。 McCune-Albright综合征(MAS)是由躯体激活突变引起的镶嵌疾病 GNA基因(c.602g> a,p.R201H)。 GNA络合物基因座编码的刺激α亚基 鸟嘌呤核前碱结合蛋白(GSα)并调节cAMP的产生。 MAS的特征是 经典的多稳性纤维发育不良,咖啡厅皮肤病变和早熟青春期的三合会。也可能导致 甲状腺功能亢进症,库欣氏病,肢端肥大和甲状腺,腐烂和胰腺的恶性肿瘤。 R201H突变被认为是在zy子后发生的,因为所有3种细菌层的组织都可能受到影响。 MAS在人类中没有已知的垂直传播。因此,种系突变被认为是 胚胎致死;但是,导致致命性的确切机制尚未完全理解。有 新兴文献表明GPCR信号通路在早期开发和干细胞中起作用 命运,我们假设MAS中看到的早期致死性可能是过度激活的结果 GS信号途径可能会在某些细胞系的开发中产生关键块。 不幸的是,我们缺乏携带的动物模型,阻碍了我们进一步研究这种机制的能力 内源性基因座中的GNA R201H突变。我们建议开发一个小说,强大的人类 使用诱导多能干细胞(IPSC)的MAS模型,以探索激活的GNA和 营地水平升高会影响MAS中的干细胞命运和谱系承诺。首先,我们将测试如何 增加营地水平,是由福斯科林诱导的药物,影响多能和谱系承诺 控制人IPSC。接下来,我们将通过将R201H突变引入到 使用CRISPR/CAS9基因编辑技术在内源基因座上控制IPSC。然后我们将比较 这两个模型并检查了药物诱导的和R201H突变诱导的cAMP是否 激活对IPSC多能性和谱系承诺具有相似的影响。然后,我们将区分我们的 设计的R201H IPSC成骨质前体,并检查突变对成骨细胞的影响 承诺和成熟。我们的结果将洞悉促成早期的潜在机制 细胞脂肪变化和MAS中的胚胎致死性。这些新知识将指导未来的成熟细胞研究 可以从IPSC产生的类型,包括肾上腺皮质细胞,垂体细胞和胰管导管 细胞。当GPCR信号通路介导人体中的许多关键生物学活动时,该模型 将支持在其他时间和疾病中对GS信号的研究。我们当前研究的结果也将是 开发筛选工具和确定GNA特异性高通量药物的关键端点至关重要 屏幕。最后,该培训计划将有助于候选人获得申请NIH K08的必要技能 奖励并发展为内分泌学领域的独立翻译的临床科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kelly Lee Wentworth其他文献

Kelly Lee Wentworth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kelly Lee Wentworth', 18)}}的其他基金

Dissecting the Cellular and Molecular Mechanisms Contributing to Craniofacial Fibrous Dysplasia
剖析导致颅面纤维发育不良的细胞和分子机制
  • 批准号:
    10678639
  • 财政年份:
    2019
  • 资助金额:
    $ 6.74万
  • 项目类别:
Dissecting the Cellular and Molecular Mechanisms Contributing to Craniofacial Fibrous Dysplasia
剖析导致颅面纤维发育不良的细胞和分子机制
  • 批准号:
    10458604
  • 财政年份:
    2019
  • 资助金额:
    $ 6.74万
  • 项目类别:
Dissecting the Cellular and Molecular Mechanisms Contributing to Craniofacial Fibrous Dysplasia
剖析导致颅面纤维发育不良的细胞和分子机制
  • 批准号:
    9806860
  • 财政年份:
    2019
  • 资助金额:
    $ 6.74万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Somos Esenciales: Community Revitalization and Health through Latino Arts and Entrepreneurship
Somos Esenciales:通过拉丁裔艺术和创业精神实现社区复兴和健康
  • 批准号:
    10781761
  • 财政年份:
    2023
  • 资助金额:
    $ 6.74万
  • 项目类别:
Aldosterone/mineralocorticoid receptor responses to biologic sex and salt intake: Role of Lysine Specific Demethylase 1 (LSD1)
醛固酮/盐皮质激素受体对生物性别和盐摄入量的反应:赖氨酸特异性脱甲基酶 1 (LSD1) 的作用
  • 批准号:
    10930190
  • 财政年份:
    2023
  • 资助金额:
    $ 6.74万
  • 项目类别:
Effects of Urban Chemical and Non-Chemical Stressors on Preadolescent Mental Health
城市化学和非化学压力源对青春期前心理健康的影响
  • 批准号:
    10813283
  • 财政年份:
    2023
  • 资助金额:
    $ 6.74万
  • 项目类别:
Elucidating mechanisms of checkpoint inhibitor-induced diabetes
阐明检查点抑制剂诱发糖尿病的机制
  • 批准号:
    10723194
  • 财政年份:
    2023
  • 资助金额:
    $ 6.74万
  • 项目类别:
Gender and Asthma
性别与哮喘
  • 批准号:
    10583660
  • 财政年份:
    2023
  • 资助金额:
    $ 6.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了