Regulation of Skeletal Growth by Soft Tissue Extracellular Matrix
软组织细胞外基质对骨骼生长的调节
基本信息
- 批准号:9654509
- 负责人:
- 金额:$ 28.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT
Short stature is a hallmark of several human Mendelian disorders caused by mutations in extracellular matrix
(ECM) proteins. These include acromelic dysplasias, a group of rare disorders featuring short stature, short
digits (brachydactyly), stiff joints, and a “pseudomuscular” build. Acromelic dysplasias are caused by dominant
mutations in specific exons of fibrillin-1 (FBN1) or by recessive mutations in select ADAMTS and ADAMTSL
proteins. Relevant to this proposal, the identical clinical manifestations of ADAMTSL2 and FBN1 mutations in
one such disorder, geleophysic dysplasia, suggests that their gene products cooperate in a shared ECM
pathway regulating postnatal limb growth. Previous work showed that ADAMTSL2 is a secreted glycoprotein
that bound both fibrillin isoforms, FBN1 and FBN2, and was implicated in the regulation of TGF signaling.
FBN2 microfibrils were increased in the ECM of a mouse model for geleophysic dysplasia, suggesting a role
for ADAMTSL2 in switching from prenatal FBN2 microfibrils to postnatal FBN1 microfibrils. My preliminary data
show that the limb-specific deletion of ADAMTSL2 in mice impairs skeletal growth similar to human acromelic
dysplasias, with exacerbated distal limb shortening and reduced Achilles tendon length. ADAMTSL2 is not
expressed in growth plate chondrocytes or bone cells, but has its strongest expression in tendon. This led to
the hypothesis that non-autonomous postnatal growth impairment in a mouse model for geleophysic
dysplasia is caused by the disruption of fibrillin microfibril function in tendon ECM due to impairment
of the ADAMTSL2-mediated fibrillin isoform switch. Despite the rarity of geleophysic dysplasia, the non-
autonomous regulation of skeletal growth governed by mechanical or regulatory properties of tendon ECM
would constitute a novel mechanism determining final bone length. In aim 1, I will test the hypothesis by
analysing postnatal limb growth and ECM alterations in the microfibril system after Adamtsl2 deletion in
tenocytes (tendon) using Scx-Cre and in an Achilles tendon transection model. In aim 2, I will investigate how
ADAMTSL2 interacts with FBN1 and FBN2 and how ADAMTSL2 executes its role in the isoform switch from
FBN2 to FBN1. I will analyze the genetic interaction of Adamtsl2 with Fbn1 and Fbn2 in mice and I will use
protein-protein interaction studies and cell culture systems to gain mechanistic insights in the function of
ADAMTSL2 in regulating the fibrillin isoform switch. The anticipated results will provide novel insights into the
pathophysiology of geleophysic dysplasia and are relevant to the pathophysiology of acromelic dysplasias and
other human genetic disorders involving fibrillin microfibrils (fibrillinopathies). An important and related one
among these is the Marfan syndrome, which affects 1-2 in 5000 individuals and shows long bone overgrowth.
These insights could be translated in novel therapeutic strategies targeting the ECM during postnatal growth.
In addition, this proposal addresses fundamental questions of how tissue-specific ECM is formed and how
functional properties of soft tissues determined by ECM might regulate postnatal limb growth.
抽象的
身材矮小是由细胞外基质突变引起的几种人类孟德尔疾病的标志
(ECM)蛋白质。其中包括雅亲粒发育不良,一组罕见的疾病,身材矮小,短暂
数字(臂杆菌),僵硬的接头和“假肌肉”的构建。雅亲域的发育不良是由主导性引起的
原纤维蛋白-1(FBN1)的特定外显子中的突变或选择ADAMTS和ADAMTSL中的隐性突变
蛋白质。与该提案相关,ADAMTSL2和FBN1突变的相同临床表现
一种这种疾病,地球物理发育不良,表明其基因产物在共享的ECM中坐标
途径调节产后肢体生长。以前的工作表明ADAMTSL2是一种分泌的糖蛋白
结合了纤维蛋白同工型,FBN1和FBN2,并在TGF信号传导的调节中实现。
在地球物理发育不良的小鼠模型的ECM中,FBN2微纤维增加了,这表明作用
对于ADAMTSL2,在从产前FBN2微纤维切换到产后FBN1微纤维时。我的初步数据
表明小鼠ADAMTSL2的肢体特异性缺失会损害类似于人类雅亲骨的骨骼生长
发育不良,远端肢体缩短和跟腱长度降低。 Adamtsl2不是
在生长板软骨细胞或骨细胞中表达,但在肌腱中具有强烈的表达。这导致了
地球物理模型中非自主产后生长障碍的假设
发育不良是由于受损肌腱ECM中纤维蛋白微纤维功能的破坏引起的
ADAMTSL2介导的纤维蛋白同工型开关的。尽管地球物理发育不良罕见,但非 -
由肌腱ECM的机械或调节特性控制的骨骼生长的自主调节
将构成确定最终骨长的新机制。在AIM 1中,我将通过
分析ADAMTSL2缺失后,产后肢体生长和ECM改变
使用SCX-CRE和跟腱翻译模型中的弯曲细胞(肌腱)。在AIM 2中,我将调查如何
ADAMTSL2与FBN1和FBN2相互作用,以及ADAMTSL2如何从
FBN2至FBN1。我将分析小鼠中ADAMTSL2与FBN1和FBN2的遗传相互作用,我将使用
蛋白质 - 蛋白质相互作用研究和细胞培养系统,以获取机械洞察力
ADAMTSL2在调查原纤维蛋白同工型开关时。预期的结果将为您提供新颖的见解
胶质物质发育不良的病理生理学,与雅亲骨发育不良的病理生理学有关
其他涉及纤维蛋白微纤维(纤维蛋白原)的人遗传疾病。一个重要且相关的
其中是马凡氏综合征,它影响了5000个个体中的1-2,并且显示出长长的骨过度生长。
这些见解可以在针对产后生长期间针对ECM的新型治疗策略中转化。
此外,该建议还解决了如何形成组织特异性ECM的基本问题以及如何
由ECM确定的软组织的功能特性可能调节产后肢体生长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dirk Hubmacher其他文献
Dirk Hubmacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dirk Hubmacher', 18)}}的其他基金
Regulation of Skeletal Growth by Soft Tissue Extracellular Matrix
软组织细胞外基质对骨骼生长的调节
- 批准号:
10320133 - 财政年份:2021
- 资助金额:
$ 28.3万 - 项目类别:
Regulation of Skeletal Growth by Soft Tissue Extracellular Matrix
软组织细胞外基质对骨骼生长的调节
- 批准号:
10437366 - 财政年份:2018
- 资助金额:
$ 28.3万 - 项目类别:
Regulation of Skeletal Growth by Soft Tissue Extracellular Matrix
软组织细胞外基质对骨骼生长的调节
- 批准号:
9529512 - 财政年份:2018
- 资助金额:
$ 28.3万 - 项目类别:
Regulation of Skeletal Growth by Soft Tissue Extracellular Matrix
软组织细胞外基质对骨骼生长的调节
- 批准号:
10187523 - 财政年份:2018
- 资助金额:
$ 28.3万 - 项目类别:
相似国自然基金
IGF2/IGF2BP1基因突变调控鹅骨骼肌生长的机制研究
- 批准号:32302729
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Wnt/β-catenin和PI3K/AKT/mTOR信号联动在钟基因介导褪黑激素促进肉鸡骨骼肌生长发育中的作用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蛋白酶体功能紊乱影响骨骼肌生长及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FGFR3经生长板骨骼干细胞诱发软骨发育不全的作用和机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
FGFR3经生长板骨骼干细胞诱发软骨发育不全的作用和机制研究
- 批准号:82272445
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
相似海外基金
Protein Phosphorylation Networks in Health and Disease
健康和疾病中的蛋白质磷酸化网络
- 批准号:
10682983 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Identification of an FGF-regulated signaling center in the Groove of Ranvier that controls longitudinal bone growth.
朗飞沟 (Groove of Ranvier) 中控制纵向骨生长的 FGF 调节信号中心的鉴定。
- 批准号:
10667798 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Development of an electrical impedance myography (EIM) vaginal device for the evaluation of pelvic skeletal muscles
开发用于评估盆腔骨骼肌的电阻抗肌动描记 (EIM) 阴道装置
- 批准号:
10822537 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Characterization of the Regulation and Gene Targets of TBX2 in Rhabdomyosarcoma
横纹肌肉瘤中 TBX2 的调控和基因靶点的表征
- 批准号:
10731025 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Metabolic regulation of healthy aging by diet, mTOR signaling, and skeletal muscle
通过饮食、mTOR 信号传导和骨骼肌对健康衰老的代谢调节
- 批准号:
10730054 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别: