GENETICS AND PREDICTION OF CEREBRAL EDEMA AFTER HEMISPHERIC STROKE
半球卒中后脑水肿的遗传学和预测
基本信息
- 批准号:9386514
- 负责人:
- 金额:$ 17.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAlzheimer&aposs DiseaseArchitectureAreaAttenuatedBioinformaticsBiologicalBiologyBlood - brain barrier anatomyBrainBrain EdemaBrain InjuriesCell DeathCerebral EdemaCessation of lifeClinicalComplexComplicationCoupledDataData SetDeteriorationDevelopmentDiseaseDrug TargetingEdemaEnrollmentExpressed Sequence TagsFoundationsFundingGenesGeneticGenetic MarkersGenetic PolymorphismGenetic RiskGenetic VariationGenetic studyGenomic approachGenomicsGenotypeGoalsGrantHemorrhageHeritabilityHeterogeneityImageIndividualInfarctionInflammationInterventionKnowledgeLeadLearningMalignant - descriptorMeasurementMeasuresMedical GeneticsMentorsMethodsModelingModernizationMolecularNatureNeurologicOperative Surgical ProceduresOutcomePathway AnalysisPathway interactionsPatientsPhenotypeProcessResearchResidual stateRiskScanningSeveritiesSiteStrokeStructureSubgroupSwellingTechniquesTestingTherapeutic InterventionTimeTrainingTraumatic Brain InjuryVariantWorkX-Ray Computed Tomographyacute strokeclinical imagingcohortendophenotypefollow-upgenetic makeupgenetic variantgenome wide association studygenome-widegenotyped patientshigh riskimaging geneticsimprovedinnovationnovel markerprecision medicinequantitative imagingrare variantresponsesuccesstau Proteinstraittumor
项目摘要
PROJECT SUMMARY
The greatest contributor to neurological deterioration in the first week after stroke is development of brain
swelling around the area of infarction. However, only half of those with large strokes develop malignant
cerebral edema sufficient to compress adjacent brain structures and threaten survival. Clinical factors
including stroke size do not explain the degree of edema that develops. Instead, it is likely that intrinsic
differences in cellular mechanisms and biologic pathways activated after stroke contribute to the observed
heterogeneity in swelling. We believe that identifying the genetic factors underlying this biologic variability
will provide important actionable knowledge that could lead to improved targeted treatments for edema
and better prediction of who is at risk.
In order to study the biology of cerebral edema, we need to capture the full spectrum of its severity with an
accurate and quantifiable measure of swelling. We have developed a novel marker of edema severity that
measures amount of CSF pushed out of the brain as the stroke swells. This measure (∆CSF) has been
validated in a preliminary study and we will now refine it by modeling ∆CSF at any time point (whenever
CT is performed, using 400 scans already acquired coupled to an automated algorithm we have developed).
This intermediate phenotype will capture rate of edema formation and be able to quantify which patients
have relatively malignant trajectories vs. those who are relatively protected (given their stroke severity and
infarct size) against developing edema.
We are continuing to acquire CT scans from subjects enrolled in a large multi-site acute stroke study that
already has almost 3,000 patients genotyped (supported by my primary mentor, Jin-Moo Lee’s R01 grant
studying neurological improvement after stroke). We will measure rate of ∆CSF in this larger (and still
expanding) cohort and quantify the residual variability (adjusting for clinical covariates) in order to
ascertain for potential genetic component. Our genomic analyses of this edema endophenotype will include
GCTA, a means of estimating total heritability, followed by genome-wide association study to identify
common polymorphisms associated with our continuous measure of edema. This unbiased discovery
approach will be supplemented by modern evolving means of uncovering rare variants and genetic
pathways that could further explain heritability of edema and provide refined biologic targets. I will also
learn to evaluate the functional significance of any potential genetic markers identified with these analyses.
I will be mentored in these bioinformatics and quantitative genomic methods by Dr. Carlos Cruchaga, a
geneticist with special expertise in dissecting complex traits using quantitative endophenotypes (e.g. CSF
tau levels as intermediate phenotypes for Alzheimer’s disease).
This project represents not only the first study of the genetic basis of cerebral edema but also a first step in
a research pathway that will continue as I move toward independent funding to further understand edema,
a disease with immense significance across all forms of brain injury. I plan to continue building upon my
training and data by replicating and sequencing promising targets and expanding upon them by studying
convergent phenotypes such as hemorrhagic transformation after stroke. I will also leverage my training
to construct a clinical-genetic risk score for edema after stroke, incorporating the most informative genetic
markers for malignant edema. Ultimately, the information gained on biology of edema could inform
therapeutic interventions to block edema as we move towards a precision-medicine approach to managing
brain injury.
项目摘要
中风后的第一周,神经学定义的最大贡献是大脑的发展
在梗塞区域肿胀。但是,只有一半的中风出现恶性肿瘤
脑水肿足以压缩相邻的大脑结构并威胁生存。临床因素
包括中风大小不能解释发展的水肿程度。相反,可能是固有的
中风后激活的细胞机制和生物途径的差异有助于观察到
肿胀的异质性。我们认为,确定这种生物学变异性的遗传因素
将提供重要的可操作知识,从而可以改善水肿的靶向疗法
更好地预测谁处于危险之中。
为了研究脑水肿的生物学,我们需要通过
准确,可量化的肿胀测量。我们已经开发了一种新颖的水肿严重性标记
随着中风膨胀,CSF的量度从大脑中推出。此度量(∆CSF)已经
在初步研究中验证,我们现在将通过在任何时间点对∆CSF进行建模(无论何时
使用已获得的400次扫描与我们开发的自动化算法相结合)。
这种中间表型将捕获浮肿形成率,并能够量化哪些患者
具有相对恶性的轨迹与那些受到相对保护的轨迹(鉴于他们的中风严重程度和
梗塞大小)反对发展水肿。
我们将继续从参加大型多站点急性中风研究的受试者中获取CT扫描,该研究
已经有近3,000名患者进行了基因分型(在我的主要心理支持下,Jin-Moo Lee的R01 Grant支持
研究中风后的神经系统改善。我们将在此较大的(仍在
扩展)队列并量化残余变异性(调整临床协变量),以便
确定潜在的遗传成分。我们对这种水肿内表型的基因组分析将包括
GCTA,一种估计总遗传力的手段,然后进行全基因组关联研究以识别
与我们连续测量水肿相关的常见多态性。这个无偏见的发现
现代发展的手段将补充方法的方法
可以进一步解释水肿的途径并提供了精致的生物学靶标。我也会
学会评估通过这些分析确定的任何潜在遗传标记的功能意义。
我将在这些生物信息学和Carlos Cruchaga博士的定量基因组方法中进行修复
具有特殊专业知识的普通师使用定量内表型解剖复杂性状(例如CSF)
tau水平为阿尔茨海默氏病的中间表型)。
该项目不仅代表了大脑水肿遗传基础的首次研究,而且还代表了
我将继续迈向独立资金以进一步了解水肿的研究途径,
在所有形式的脑损伤中具有巨大意义的疾病。我计划继续在我的
培训和数据通过复制和测序承诺目标,并通过研究对目标进行扩展
融合表型,例如中风后出血转化。我还将利用我的培训
构建中风后水肿的临床遗传风险评分,并结合最有用的通用性
恶性水肿的标记。最终,获得的有关水肿生物学的信息可以告知
当我们朝着管理中的精确医学方法时,治疗性干预措施可以阻止水肿
脑损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajat Dhar其他文献
Rajat Dhar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajat Dhar', 18)}}的其他基金
Genetic Architecture of Cerebral Edema after Stroke
中风后脑水肿的遗传结构
- 批准号:
10666702 - 财政年份:2022
- 资助金额:
$ 17.91万 - 项目类别:
Genetic Architecture of Cerebral Edema after Stroke
中风后脑水肿的遗传结构
- 批准号:
10446825 - 财政年份:2022
- 资助金额:
$ 17.91万 - 项目类别:
GENETICS AND PREDICTION OF CEREBRAL EDEMA AFTER HEMISPHERIC STROKE
半球卒中后脑水肿的遗传学和预测
- 批准号:
9754265 - 财政年份:2017
- 资助金额:
$ 17.91万 - 项目类别:
GENETICS AND PREDICTION OF CEREBRAL EDEMA AFTER HEMISPHERIC STROKE
半球卒中后脑水肿的遗传学和预测
- 批准号:
10020442 - 财政年份:2017
- 资助金额:
$ 17.91万 - 项目类别:
GENETICS AND PREDICTION OF CEREBRAL EDEMA AFTER HEMISPHERIC STROKE
半球卒中后脑水肿的遗传学和预测
- 批准号:
10237306 - 财政年份:2017
- 资助金额:
$ 17.91万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 17.91万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 17.91万 - 项目类别:
Developing a novel EEG-based index for evaluating amyloid and tau burden in Alzheimer's Disease
开发一种基于脑电图的新型指数来评估阿尔茨海默病中淀粉样蛋白和 tau 蛋白的负担
- 批准号:
10602059 - 财政年份:2023
- 资助金额:
$ 17.91万 - 项目类别:
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
- 批准号:
10673857 - 财政年份:2022
- 资助金额:
$ 17.91万 - 项目类别: