Quantitative Image Modeling for Brain Tumor Analysis and Tracking
用于脑肿瘤分析和跟踪的定量图像建模
基本信息
- 批准号:9278165
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAlgorithmsAtlasesBase of the BrainBayesian AnalysisBiologyBrainBrain NeoplasmsBrain scanCentral Nervous System NeoplasmsChildChildhoodClassificationClinicalClinical TrialsCognitiveCommunitiesComputational algorithmComputer SimulationComputer softwareCystDataData SetDiagnosisDiffuseDiseaseEarly DiagnosisEarly treatmentEdemaEligibility DeterminationEnsureEquipmentExcisionFamilyFractalsGoalsGrantGrowthHistopathologyImageImage AnalysisKnowledgeLabelLesionLiteratureMRI ScansMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of brainMalignant neoplasm of central nervous systemMedical ImagingMethodsModelingMultiple AbnormalitiesNational Cancer InstituteNecrosisNoiseNormal tissue morphologyOperative Surgical ProceduresOutcomePatientsPediatric HospitalsPerformancePhiladelphiaProtocols documentationRadiation therapyResearchResearch Project GrantsResidual volumeResourcesRiskRisk stratificationSensitivity and SpecificitySignal TransductionSlideTestingTextureTimeTissuesTreatment outcomeTumor TissueTumor VolumeUnited States National Institutes of HealthVariantbasebrain abnormalitiesbrain tissueclinical applicationfollow-upimage guided radiation therapyimage guided therapyimprovedmortalitymultimodalityneuroimagingnovelpatient populationprogramspublic health relevancequantitative imagingtooltumor
项目摘要
DESCRIPTION (provided by applicant):Mortality rates related to brain and other Central Nervous System (CNS) cancers have held steady over the last three or four decades, despite tremendous advancements in our knowledge about the biology, diagnosis, and treatment of brain cancer. Further progress in early diagnosis and treatment is likely to be associated, in part, with improving computational models that are used ubiquitously for analyzing and segmenting brain tumors. Clinical applications continue to necessitate improved segmentation of hard-to- detect poorly enhanced, multi-foci and small tumors that are surrounded by multiple abnormal tissues such as edema, necrosis and cysts. In addition, computational models need to be improved for handling diffusive boundaries among different tissue types for robust Brain Tumor Segmentation (BTS). Furthermore, in an effort to reduce cognitive sequelae, contemporary protocols employ risk-adapted therapy in which risk stratification is based on the volume of residual tumor after surgical resection and the presence of metastatic disease at diagnosis. Therefore, further improvement in cancer outcomes, particularly among children, is unlikely to be achieved without improved quantitation of tumor volume. Furthermore, replicating advanced computer algorithms across different imaging centers, studies, patient populations (adult and pediatric) and equipment is a persistent problem for the entire field of computational medical imaging. Consequently, the overall hypothesis of this proposed research project is that a robust automatic BTS and other abnormal and normal brain tissue segmentation can be developed for quantitation and tracking of tumor volume which, in turn, will help improve early diagnosis, follow- up and treatment of CNS tumors. The proposed project aims to focus on principled computational modeling using a huge amount of neuroimaging datasets for BTS that are becoming prevalent, especially from the National Cancer Institute's sponsored Brain Tumor Segmentation (BRATS) challenges (http://www.braintumorsegmentation.org). This goal will be accomplished via the following aims: (1) Identify novel features, multiclass (tissue) feature selection and segmentation of hard-to-detect tumors and associated abnormalities using multimodal MRIs from different imaging centers; (2) Enable robust segmentation of tumor, other abnormal and normal tissues and tacking of brain tumor by fusing atlas-based tumor segmentation (ABTS) and feature-based BTS (FBTS); (3) implement software integration into a widely available tool (3D Slicer) available via multiple NIH sponsored Resource Centers such as the Neuroimaging Analysis Center (NAC), the National Alliance for Medical Image Computing (NA-MIC), and the National Center for Image Guided Therapy (NCIGT), for wider dissemination of BTS tool; and (4) Validate and evaluate our integrated BTS tool to quantify improvements in the detectability, sensitivity and specificity, and corresponding errors.
描述(由申请人证明):尽管我们对生物学,诊断和治疗脑癌的进一步进步,但与大脑和其他中央系统(CNS)癌症有关的死亡率稳定。治疗可能与临床肿瘤的部分相关,并分割了临床应用。在不同的组织组织中处理扩散的边界,以减少脑肿瘤分割(BTS)。诊断时的转移性。其他用于肿瘤体积的正常脑组织,进而有助于改善提出的肿瘤的早期诊断,随访和治疗。来自国家癌症研究所赞助的脑肿瘤分割(Brats)挑战的Y(http://www.braintumorsegentation.org)将通过以下AMS完成使用来自不同成像中心的多模式MRI的T肿瘤和相关异常,并通过融合基于ATLAS的肿瘤分割(ABTS)和基于特征的BTS(FBTS)ENT软件集成到广泛可用的工具(3D SliCer) )通过多个NIH赞助的资源中心,例如神经影像分析中央(NAC),国家医学图像计算联盟(NA-MIC)ED疗法(NCIGT),用于更广泛的BTS工具;我们集成的BTS工具量化了可检测性,灵敏度和特异性以及相关性错误的改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khan M Iftekharuddin其他文献
Khan M Iftekharuddin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khan M Iftekharuddin', 18)}}的其他基金
QUANTITATIVE IMAGE MODELING FOR BRAIN TUMOR ANALYSIS AND TRACKING
用于脑肿瘤分析和跟踪的定量图像建模
- 批准号:
9706156 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Quantitative Image Modeling for Brain Tumor Analysis and Tracking
用于脑肿瘤分析和跟踪的定量图像建模
- 批准号:
9053035 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Multiresolution-fractal modeling for brain tumor detection
用于脑肿瘤检测的多分辨率分形模型
- 批准号:
8374280 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Multiresolution-fractal modeling for brain tumor detection
用于脑肿瘤检测的多分辨率分形模型
- 批准号:
7988732 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
- 批准号:
10584028 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: