Generating rapid antitumor immunity with lymphocyte-reprogramming nanocarriers
利用淋巴细胞重编程纳米载体产生快速抗肿瘤免疫力
基本信息
- 批准号:9307201
- 负责人:
- 金额:$ 37.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Advanced Malignant NeoplasmAffinityAntigensAutologousBindingBiomedical EngineeringBypassCD3 AntigensCRISPR/Cas technologyCancer ModelCancer PatientCell physiologyCellsClimateClustered Regularly Interspaced Short Palindromic RepeatsCommunicable DiseasesCustomDNADiagnosisEndocytosisEventFingerprintGene-ModifiedGenesGenetic EngineeringGoalsHeterogeneityHomeostasisImmuneImmune checkpoint inhibitorImmune systemImmunityImmunologistImmunotherapyImpairmentIn SituIn VitroInfusion proceduresInjectableInterventionLaboratoriesLigandsLymphocyteMalignant NeoplasmsMalignant neoplasm of ovaryMeasuresMediatingMedicineMessenger RNAMethodsMusNR0B2 geneOncologistOperative Surgical ProceduresPatientsPharmaceutical PreparationsPhenotypePlasmidsPolymersProductionProtein KinaseProtein Tyrosine PhosphataseRNAROR1 geneReagentReceptor GeneRecurrenceRelapseResearchResistanceResortSchemeSystemT memory cellT-Cell ReceptorT-LymphocyteTestingTherapy trialTimeToxic effectTrainingTranslatingTumor AntigensTumor EscapeTumor ImmunityUnited StatesVaccinesVariantViral Antigensbasecancer cellcancer typechemotherapychimeric antigen receptorclinically relevantcombatcostdesigndosageendonucleasegenome editinggenome sequencingimmune checkpointimmunoregulationimprovedimproved functioningin vivoleukemiamesothelinmultidisciplinarynanocarriernanoparticlenanovectorneoplastic cellnovelovarian neoplasmparticlepatient populationpreventprogramsreceptorreceptor expressionresponsestandard carestandard of caretumorwhole genome
项目摘要
So far, medicine lacks an intervention that can rapidly generate anti-tumor immunity. For example, vaccines
can train the immune system to selectively destroy cancer cells, however they may require months to do so--by
which time tumors may become lethal. Infusions of autologous T cells targeted against tumor antigens using in
vitro approaches are expensive and labor-intensive, and must be personalized for each patient in specialized
cell-production facilities. We propose an alternative: the research outlined here seeks to develop an off-the-
shelf reagent that can quickly program tumor-recognizing capabilities into T cells without extracting them for
laboratory manipulation. Specifically, we hypothesize that circulating T cells can be programmed by gene-
carrying polymeric nanoparticles (NPs) to express chimeric antigen receptors (CARs) that recognize selected
antigens, enabling them to mediate rapid and vigorous rejection of tumors. We also hypothesize that co-
delivering a CRISPR genome editing system to silence immune checkpoints will improve the efficacy and
persistence of NP-programmed T cells. Our multidisciplinary team of immunologists, bioengineers, and
geneticists has already developed a novel NP configuration that can successfully introduce leukemia-specific
CAR receptor genes into circulating lymphocytes. The reprogrammed cells continue to produce these
receptors for weeks, allowing them to act as a `living drug' that accumulates at the target, increases in number,
serially destroys tumor cells, and ultimately differentiates into long-lived memory T cells. Our eventual goal is to
provide a practical, low-cost, broadly-applicable treatment that can generate anti-tumor immunity “on demand”
for oncologists in a variety of settings. As essential steps toward achieving this goal, we propose these Specific
Aims: (1) To measure how effectively NP-programmed CAR expression causes the regression of advanced
cancer; (2) To determine if antigen loss and tumor escape events are reduced when NP combinations program
T cells to target a spectrum of antigens; and (3) To determine if silencing negative regulators of T cell function
improves their anti-tumor activity. We expect our results will provide a basis to design various gene
modification systems that can generate immunity against any type of cancer. Especially, they will reduce the
likelihood of antigen escape variants because patients can be treated with NP-delivered CAR genes tailored to
their tumor's antigenic fingerprint. These particles could be easily adapted to program lymphocytes to express
high-affinity T cell receptors specific for various viral antigens, so our results may also provide a strategy for
treating infectious diseases.
到目前为止,药物缺乏可以迅速产生抗肿瘤免疫力的干预措施。例如,疫苗
可以训练免疫系统以选择性破坏癌细胞,但是它们可能需要几个月的时间 -
哪个时候肿瘤可能会致命。使用IN靶向针对肿瘤抗原的自体T细胞的输注
体外方法是昂贵且劳动力密集的,必须对每个患者进行个性化专业化
细胞生产设施。我们提出了一种替代方案:此处概述的研究试图开发一个现行
可以将肿瘤识别能力迅速编程为T细胞的架子试剂,而无需提取它们
实验室操作。具体而言,我们假设可以通过基因编程循环的T细胞
携带聚合物纳米颗粒(NP)表达嵌合抗原受体(CAR)识别选定的
抗原,使它们能够介导肿瘤的快速而有力地排斥。我们还假设该共同
提供CRISPR基因组编辑系统以使免疫检查点保持沉默将提高效率和
NP编程的T细胞的持久性。我们的免疫学家,生物工程师和
仿制药已经开发了一种新型的NP配置,可以成功引入白血病特异性
汽车受体基因成循环淋巴细胞。重编程的细胞继续产生这些
受体数周,使它们充当积累目标的“活着药物”,数量增加,数量增加,
序列破坏肿瘤细胞,并最终区分为长寿命的记忆T细胞。我们最终的目标是
提供一种实用,低成本,广泛的可供处理方法,可以“按需”产生抗肿瘤免疫学
用于各种环境中的肿瘤学家。作为实现这一目标的重要步骤,我们提出了这些特定的
目的:(1)测量NP编程的CAR表达如何导致高级回归
癌症; (2)确定NP组合程序时是否减少抗原损失和肿瘤逃生事件
T细胞靶向抗原谱; (3)确定是否沉默T细胞功能的负面调节剂
改善其抗肿瘤活性。我们希望我们的结果将为设计各种基因提供基础
可以针对任何类型的癌症产生免疫力的修饰系统。特别是,他们会减少
抗原逃生变体的可能性是因为患者可以用量身定制的NP递送的汽车基因治疗
他们的肿瘤的抗原指纹。这些颗粒很容易适应程序淋巴细胞以表达
高亲和力T细胞受体特有的各种病毒抗原,因此我们的结果也可能为
治疗传染病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Stephan其他文献
Matthias Stephan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Stephan', 18)}}的其他基金
Developing macrophage reprogramming mRNA nanocarriers for initial clinical testing
开发用于初始临床测试的巨噬细胞重编程 mRNA 纳米载体
- 批准号:
10601437 - 财政年份:2022
- 资助金额:
$ 37.19万 - 项目类别:
Developing macrophage reprogramming mRNA nanocarriers for initial clinical testing
开发用于初始临床测试的巨噬细胞重编程 mRNA 纳米载体
- 批准号:
10459608 - 财政年份:2022
- 资助金额:
$ 37.19万 - 项目类别:
Developing macrophage reprogramming mRNA nanocarriers for initial clinical testing
开发用于初始临床测试的巨噬细胞重编程 mRNA 纳米载体
- 批准号:
10292408 - 财政年份:2021
- 资助金额:
$ 37.19万 - 项目类别:
Rational in situ programming of cancer vaccine-responding T-cell clones
癌症疫苗反应 T 细胞克隆的合理原位编程
- 批准号:
10663869 - 财政年份:2021
- 资助金额:
$ 37.19万 - 项目类别:
Rational in situ programming of cancer vaccine-responding T-cell clones
癌症疫苗反应 T 细胞克隆的合理原位编程
- 批准号:
10601347 - 财政年份:2021
- 资助金额:
$ 37.19万 - 项目类别:
Rational in situ programming of cancer vaccine-responding T-cell clones
癌症疫苗反应 T 细胞克隆的合理原位编程
- 批准号:
10412138 - 财政年份:2021
- 资助金额:
$ 37.19万 - 项目类别:
Rational in situ programming of cancer vaccine-responding T-cell clones
癌症疫苗反应 T 细胞克隆的合理原位编程
- 批准号:
10268045 - 财政年份:2021
- 资助金额:
$ 37.19万 - 项目类别:
Generating rapid antitumor immunity with lymphocyte-reprogramming nanocarriers
利用淋巴细胞重编程纳米载体产生快速抗肿瘤免疫力
- 批准号:
10189527 - 财政年份:2017
- 资助金额:
$ 37.19万 - 项目类别:
Generating rapid antitumor immunity with lymphocyte-reprogramming nanocarriers
利用淋巴细胞重编程纳米载体产生快速抗肿瘤免疫力
- 批准号:
10602867 - 财政年份:2017
- 资助金额:
$ 37.19万 - 项目类别:
Therapeutic cell engineering using surface-conjugated synthetic nanoparticles
使用表面共轭合成纳米粒子的治疗性细胞工程
- 批准号:
7998029 - 财政年份:2010
- 资助金额:
$ 37.19万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向KRAS新抗原TCR-T细胞的亲和力优化和抗肿瘤功能分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向KRAS新抗原TCR-T细胞的亲和力优化和抗肿瘤功能分析
- 批准号:82202991
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于新抗原受体可变域的赭曲霉毒素A竞争物与VHH抗体互作的亲和力调控机制
- 批准号:32102067
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
免疫分析异源竞争模式中半抗原设计机制研究
- 批准号:31800776
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
HORMAD-specific TGF-beta resistant memory T cells for treatment of patients with Gastro-esophageal Cancer
HORMAD 特异性 TGF-β 耐药性记忆 T 细胞用于治疗胃食管癌患者
- 批准号:
10731407 - 财政年份:2023
- 资助金额:
$ 37.19万 - 项目类别:
Next Generation Autologous TIL Cancer Therapy: Development of GMP manufacturing process
下一代自体 TIL 癌症疗法:GMP 制造工艺的开发
- 批准号:
10685604 - 财政年份:2022
- 资助金额:
$ 37.19万 - 项目类别:
Engineered anti-PSCA antibodies for immunoPET and targeted therapy of pancreatic cancer
用于免疫PET和胰腺癌靶向治疗的工程化抗PSCA抗体
- 批准号:
10544038 - 财政年份:2022
- 资助金额:
$ 37.19万 - 项目类别:
"Post-translational modification of non-histone proteins as a mechanism of pMHC-I neo-ligand generation"
“非组蛋白蛋白的翻译后修饰作为 pMHC-I 新配体生成的机制”
- 批准号:
10583511 - 财政年份:2022
- 资助金额:
$ 37.19万 - 项目类别:
Next Generation Autologous TIL Cancer Therapy: Development of GMP manufacturing process
下一代自体 TIL 癌症疗法:GMP 制造工艺的开发
- 批准号:
10472171 - 财政年份:2022
- 资助金额:
$ 37.19万 - 项目类别: