Pre-clinical development of gene modified stem cells and CAR T-cells for HIV-1
针对 HIV-1 的基因修饰干细胞和 CAR T 细胞的临床前开发
基本信息
- 批准号:9249498
- 负责人:
- 金额:$ 24.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AblationAcademiaAddressAnimal ModelAutologousBerlinBiologic DevelopmentBiological AssayBone MarrowBone Marrow TransplantationCCR5 geneCD34 geneCell TransplantsCellsChronicClinicClinicalClinical ProtocolsClinical TrialsCollaborationsCombined Modality TherapyCryopreservationDevelopmentDiseaseEngineeringEngraftmentFormulationFrequenciesFundingFutureGene therapy trialGene-ModifiedGenesGeneticHIVHIV SeropositivityHIV-1Hematopoietic stem cellsHumanImmuneImmune systemIn VitroIndividualInfectionKnock-outLeadLentivirus VectorLong-Term EffectsMeasuresMethodsModificationMusPathogenicityPathway interactionsPatientsPeripheralPharmacology and ToxicologyPhasePopulationPrivate SectorProceduresProtocols documentationRegimenReportingResidual stateResourcesRiskSafetyScientistStem cellsT cell differentiationT-LymphocyteTestingTherapeuticTransplantationWorkbasecell growthchimeric antigen receptorclinical developmentclinical translationcommercializationconditioningexperiencegene therapygene transplantation for gene therapygenotoxicityimprovedin vivoknock-downpatient populationpractical applicationpreclinical developmentprogramsprotocol developmentresearch clinical testingsafety and feasibilitysafety studysafety testingsmall hairpin RNAsuccesstherapeutic candidatetrial designvector
项目摘要
SUMMARY/ABSTRACT (PROJECT 4 – SYMONDS, CALIMMUNE CONSORTIUM)
The few gene-based therapies for HIV-1 disease that have been tested in the clinic have been focused on
protecting differentiated T-cells, principally through ablation or reduction of CCR5 expression. While several
studies have proposed to mimic the natural situation by genetic modification of autologous HSPC to achieve
knockdown/knockout of CCR5, we are the only group to test this approach in the clinic. Transplantation of such
a gene modified stem cell provides two therapeutic benefits; 1) a new immune system would be formed from
the repopulating cells, unimpaired by the detrimental effects of long term chronic HIV-1 infection, and 2) the
newly repopulating cells would be protected from subsequent HIV-1 infection. However, unlike the “Berlin”
patient, complete bone marrow replacement is not likely to occur because of the risk of myeloablative
conditioning and the low efficiency of engraftment of gene-modified HSPC in the absence of such conditioning.
Therefore, in order to replicate the cure in a broader HIV-1 patient population, we must understand the factors
that improve engraftment in HIV-1 disease and develop more effective and safer bone marrow transplant
procedures. As indicated, current methods result in a relatively low level of repopulation, generally less than
1%. As a consequence, the engineered immune cells that are protected from HIV-1 are only present at low
frequency and the vast majority of cells can still serve as targets and reservoirs for HIV-1 replication. We
propose to address this limitation by assessing a combination therapy consisting of both a means to protect
progeny cells from subsequent HIV-1 infection and to enhance stem cell engraftment and repopulation. Since
we anticipate that even with greatly enhanced engraftment, there will still be residual non-gene modified cells
that can replicate HIV-1, we will also include a chimeric antigen receptor (CAR) delivered through a peripheral
T cell transplant to target those remaining cells that are not protected and become infected by HIV-1.
The hypothesis to be tested in this project is that transplantation of gene-modified HSPC and T-cells will
give rise to self-perpetuating cell populations that may provide a continuous means of controlling HIV and its
pathogenic sequlae in HIV-positive individuals. In conjunction with the other projects, we propose to; 1)
conduct safety and feasibility assessments that will guide the selection of lead therapeutic candidate(s); 2)
produce GLP and GMP grade therapeutic lentiviral vector(s); 3) assess safety (pharmacology and toxicology)
in an appropriate animal model; 4) qualify the transduction of human CD34+ HPSC and T cells, expansion of T
cells, and formulation and cryopreservation of both cell populations; 5) assess the best patient population,
entry criteria, mobilization and conditioning regimens, and trial design, and to develop a protocol for a Phase I
safety and tolerability trial that will give us an early indication of in vivo efficacy, and 6) be ready to submit an
IND for this trial by the end of the funding period.
摘要/摘要(项目4 - Symonds,Calimmune财团)
在诊所进行了测试的少数基于基因的HIV-1疾病疗法已重点是
主要通过消融或降低CCR5表达来保护分化的T细胞。而几个
研究提出,通过自体HSPC的遗传修饰来模仿自然情况以实现
CCR5的敲低/敲除,我们是唯一在诊所测试这种方法的群体。这种移植
基因修饰的干细胞可提供两个治疗益处。 1)将从
重生细胞,由长期慢性HIV-1感染的有害影响和2)
新重生细胞将受到随后的HIV-1感染的保护。但是,与“柏林”不同
由于有骨髓性的风险
在没有这种调节的情况下,调节和基因改性HSPC的植入效率低。
因此,为了复制更广泛的HIV-1患者人群的治疗,我们必须了解这些因素
这可以改善HIV-1疾病的植入,并发展出更有效,更安全的骨髓移植
程序。如前所述,当前方法导致相对较低的重新流量,通常小于
1%。结果,受保护免受HIV-1的工程免疫小球仅存在于低处
频率和绝大多数细胞仍然可以用作HIV-1复制的靶标和储层。我们
通过评估由两种方法组成的组合疗法来解决此限制的建议
后代细胞随后的HIV-1感染并增强干细胞的植入和重生。自从
我们预计即使植入大大增强,仍然会有残留的非基因修饰细胞
可以复制HIV-1,我们还将包括通过外围传递的嵌合抗原受体(CAR)
T细胞移植针对那些不受保护并被HIV-1感染的剩余细胞移植。
该项目要检验的假设是基因修饰的HSPC和T细胞的移植将
引起自我延续的细胞群体,可能提供连续控制艾滋病毒及其的手段
艾滋病毒阳性个体中的致病性sequlae。我们建议与其他项目结合; 1)
进行安全性和可行性评估,以指导铅疗法候选者的选择; 2)
产生GLP和GMP级疗法慢病毒载体; 3)评估安全(药理学和毒理学)
在适当的动物模型中; 4)符合人CD34+ HPSC和T细胞的转移,T的扩展
细胞,两个细胞群体的配方和冷冻保存; 5)评估最好的患者人数,
进入标准,动员和调节方案以及试验设计,并为I期制定协议
安全性和耐受性试验将为我们提供体内效率的早期指示,6)准备提交
在资助期结束时进行此试验的IND。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Symonds其他文献
Geoffrey Symonds的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Symonds', 18)}}的其他基金
Pre-clinical development of gene modified stem cells and CAR T-cells for HIV-1
针对 HIV-1 的基因修饰干细胞和 CAR T 细胞的临床前开发
- 批准号:
9058992 - 财政年份:
- 资助金额:
$ 24.18万 - 项目类别:
Pre-clinical development of gene modified stem cells and CAR T-cells for HIV-1
针对 HIV-1 的基因修饰干细胞和 CAR T 细胞的临床前开发
- 批准号:
8899037 - 财政年份:
- 资助金额:
$ 24.18万 - 项目类别:
相似海外基金
The role of Trem2-expressing macrophages in atherosclerosis
表达 Trem2 的巨噬细胞在动脉粥样硬化中的作用
- 批准号:
10464928 - 财政年份:2022
- 资助金额:
$ 24.18万 - 项目类别:
Chemical Exchange Saturation Transfer (CEST) MRI for the Characterization Small Renal Masses
用于表征小肾脏肿块的化学交换饱和转移 (CEST) MRI
- 批准号:
10611440 - 财政年份:2021
- 资助金额:
$ 24.18万 - 项目类别:
Chemical Exchange Saturation Transfer (CEST) MRI for the Characterization Small Renal Masses
用于表征小肾脏肿块的化学交换饱和转移 (CEST) MRI
- 批准号:
10406271 - 财政年份:2021
- 资助金额:
$ 24.18万 - 项目类别:
Chemical Exchange Saturation Transfer (CEST) MRI for the Characterization Small Renal Masses
用于表征小肾脏肿块的化学交换饱和转移 (CEST) MRI
- 批准号:
10209989 - 财政年份:2021
- 资助金额:
$ 24.18万 - 项目类别:
Myo-inositol regulation of myelination in development and hypoxic newborn brain injury
肌醇对发育中髓鞘形成和缺氧新生儿脑损伤的调节
- 批准号:
9760424 - 财政年份:2019
- 资助金额:
$ 24.18万 - 项目类别: