The spatiotemporal mapping of the RSC and SWI/SNF chromatin remodeler complexes on the nucleosome in living cells.
活细胞核小体上 RSC 和 SWI/SNF 染色质重塑复合物的时空图谱。
基本信息
- 批准号:9377747
- 负责人:
- 金额:$ 36.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAddressAmino AcidsArchitectureArtsBehaviorBindingBiochemicalBiochemical PathwayBiologicalBiological AssayBiologyBiomedical EngineeringCell CycleCell NucleusCellsChromatinChromatin FiberChromosome StructuresChromosomesComplexCrosslinkerDNADNA DamageDataDisadvantagedDiseaseEnvironmentEnzymesEventFiberFoundationsFutureGene ExpressionGeneticGenetic CodeGrantHereditary DiseaseHistonesHuman GeneticsImmunoprecipitationImpairmentIn VitroIndividualInstitutesLeadLearningMaintenanceMass Spectrum AnalysisMethodsMolecularMonitorMultiprotein ComplexesMutationNuclearNucleosomesPathway interactionsPhasePhysiologicalPlant RootsPlayPost-Translational Protein ProcessingProtein FamilyProteinsPublic HealthRecruitment ActivityRegulationResearchResearch TrainingResolutionRoleSiteStreamStructural ProteinStructureStudentsSurfaceTechniquesTechnologyTimeTrainingTranslationsUnited States National Institutes of HealthWorkYeastsbasechromatin proteinchromatin remodelingchromosomal locationcohesioncollegecrosslinkdesigndevelopmental diseaseexperienceexperimental studyfitnessin vivoinsightmolecular dynamicspeerreconstitutionrepairedresponsespatiotemporalsuccesssynthetic biologytemporal measurementundergraduate student
项目摘要
Chromatin remodeler (CR) complexes play crucial roles in regulating chromosomal architectural and act to
modify nucleosomal DNA contacts by repositioning nucleosomes. The mechanistic details of the CR family of
proteins are of importance because each remodeler complex contributes to unique chromatin structural
maintenance. A mechanistic understanding of these proteins requires resolving how they interact and influence
the chromosomal fiber. CRs are comprised of an ATPase active subunit and numerous auxiliary components
that are involved in elaborate protein-chromatin stabilizing interactions. This makes it a challenging task to
resolve completely their structures and how each subunit may interact individually with the nucleosome. To date,
there remains no high-resolution structural data for a remodeler complex bound to the nucleosome. A
disadvantage to remodeler studies is that they often rely on the reconstitution of nucleosomal arrays in solution
that cannot recapitulate the true nuclear environment. Therefore, to enhance the understanding of CR behavior
a technique is required that illuminates the molecular contacts that occur between the nucleosome and
CR proteins inside the living nucleus. This proposal will define an approach to resolve the molecular
dynamics of CR proteins revealing a nucleosomal-CR interactome in living yeast. This will be achieved
using a method that allows for the covalent trapping of histone-protein interactions in the nucleus by employing
site-specific, UV-inducible crosslinker amino acids that are genetically incorporated into the nucleosome. Spatial
details will be achieved in two ways. First, specific placement of the crosslinker within a histone protein will
provide insights into the nucleosomal surface contacts made by CR subunits. Second, when this approach is
paired with chromosome immunoprecipitation (CHiP) technologies it will be possible to determine the
chromosomal positioning of the crosslinking event, detailing the occupancy of the interaction along the chromatin
fiber. Temporal resolution will be obtained with the aid of synchronous cells and UV-control of the crosslinking
event. Time-resolved in vivo crosslinking with genetically encoded UV-crosslinkers is ideally suited to address
many of the open questions in chromosome structure, composition and formation. Most critically it has the
potential to reveal the network of interactions within chromosomal pathways and identify the sequence
of events involved in those mechanisms. Particularly, this approach will help define how histone
posttranslational modification events influence CR binding and dynamics at the nucleosomal surface. This work
will be the first to institute the technique to assess structural and dynamic crosslink mapping of chromosomal
remodeler complexes, in vivo. This work will bridge an extensive gap that spans in vitro versus in vivo
experimentation of CRs and assign biologically relevant structure/function dynamics to these large intricate
complexes. The results will greatly advance the chromatin biology field. Furthermore, CRs are medicinal targets
for disease and developmental disorders highlighting their relevance to public health.
1
染色质重塑(CR)配合物在调节染色体建筑和行动中起着至关重要的作用
通过重新定位核小体来修饰核小体DNA接触。 CR家族的机械细节
蛋白质很重要,因为每个重塑剂复合物都有助于独特的染色质结构
维护。对这些蛋白质的机械理解需要解决它们的相互作用和影响
染色体纤维。 CRS由ATPase活动亚基和许多辅助组成组成
参与精心制作的蛋白质 - 染色质稳定相互作用。这使其成为一项具有挑战性的任务
完全解决它们的结构以及每个亚基如何与核小体单独相互作用。迄今为止,
对于与核小体结合的重塑络合物复合物的高分辨率结构数据。一个
对重塑研究的缺点是,它们通常依赖于溶液中核小体阵列的重构
这不能概括真正的核环境。因此,增强对CR行为的理解
需要一项技术来照亮核小体和之间发生的分子接触
活核内的CR蛋白。该建议将定义一种解决分子的方法
Cr蛋白的动力学揭示了活酵母中核小体相互作用组。这将被实现
使用一种方法,该方法允许通过采用使用组蛋白蛋白相互作用的共价捕获。
位点特异性的,紫外线诱导的交联氨基酸,遗传掺入核小体中。空间
详细信息将以两种方式实现。首先,交联链在组蛋白中的特定位置将
提供有关CR亚基进行的核小体表面接触的见解。第二,当这种方法是
与染色体免疫沉淀(CHIP)技术配对,可以确定
交联事件的染色体定位,详细说明了沿染色质的相互作用的占用
纤维。时间分辨率将借助同步细胞和交联的紫外线控制
事件。与遗传编码的紫外线交联的体内交联的时间分辨非常适合解决
染色体结构,组成和形成中的许多开放问题。最关键的是
潜力揭示染色体途径中相互作用网络并识别序列
这些机制所涉及的事件。特别是,这种方法将有助于定义组蛋白
翻译后修饰事件会影响核小体表面的CR结合和动力学。这项工作
将是第一个制定评估染色体结构和动态交联映射技术的技术
重塑配合物,体内。这项工作将弥合广泛的差距,该差距跨越体内与体内
CRS的实验,并将与生物学相关的结构/功能动态分配给这些大错
复合物。结果将大大推进染色质生物学领域。此外,CR是药物靶标
对于疾病和发育障碍,强调了它们与公共卫生的相关性。
1
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spanning the gap: unraveling RSC dynamics in vivo.
- DOI:10.1007/s00294-020-01144-1
- 发表时间:2021-06
- 期刊:
- 影响因子:2.5
- 作者:Neumann H;Wilkins BJ
- 通讯作者:Wilkins BJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Jason Wilkins其他文献
Bryan Jason Wilkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural Mechanisms of DNA Damage Sensing and Activation of the ATR, Fanconi Anemia, and ATM Checkpoints
DNA 损伤感知和 ATR、范可尼贫血和 ATM 检查点激活的结构机制
- 批准号:
10639156 - 财政年份:2023
- 资助金额:
$ 36.77万 - 项目类别:
Nuclear Receptor Dysfunction Reprograms Metabolism and Cellular Proliferation in Wilson's Disease
威尔逊病中核受体功能障碍重新编程代谢和细胞增殖
- 批准号:
10516671 - 财政年份:2022
- 资助金额:
$ 36.77万 - 项目类别:
Contribution of the Putative ScfCDE Importer to the Pathophysiology of Group A Streptococcal Disease
假定的 ScfCDE 进口商对 A 组链球菌疾病病理生理学的贡献
- 批准号:
9979173 - 财政年份:2020
- 资助金额:
$ 36.77万 - 项目类别:
Defining protein:protein interactions for the regulation of renal V-ATPase function: role in expression, assembly and trafficking.
定义蛋白质:调节肾 V-ATP 酶功能的蛋白质相互作用:在表达、组装和运输中的作用。
- 批准号:
10207619 - 财政年份:2019
- 资助金额:
$ 36.77万 - 项目类别:
Defining protein:protein interactions for the regulation of renal V-ATPase function: role in expression, assembly and trafficking.
定义蛋白质:调节肾 V-ATP 酶功能的蛋白质相互作用:在表达、组装和运输中的作用。
- 批准号:
10454931 - 财政年份:2019
- 资助金额:
$ 36.77万 - 项目类别: