Circadian regulation of glucocorticoid-dependent inflammation in noise-induced synaptopathy
噪声诱发突触病中糖皮质激素依赖性炎症的昼夜节律调节
基本信息
- 批准号:9527912
- 负责人:
- 金额:$ 29.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:ARNTL geneAddressAdrenalectomyAgonistAuditoryAuditory systemBiological AssayBrain StemCircadian RhythmsClock proteinCochleaDataDendritesDisciplineElectrophysiology (science)FundingGene Expression RegulationGenesGeneticGlucocorticoidsHair CellsInflammationInflammatoryInflammatory ResponseInterleukin-6KnowledgeLaboratoriesLateralMaintenanceMeasuresMediatingMessenger RNAMethodsMolecularMorphologyMusNational Institute on Deafness and Other Communication DisordersNeuronsNeurosciencesNoiseOrgan of CortiPathway interactionsPatternPeriodicityPeripheralPharmacologic SubstancePharmacological TreatmentPhysiologicalProcessRecoveryRegulationReportingRestSamplingSignal TransductionSynapsesTechniquesTherapeutic EffectTimeTissuesTranscriptTraumaTreatment EfficacyTreatment outcomechemokinecircadian pacemakercytokinedrug efficacyinterdisciplinary approachmouse modelnovelnovel therapeuticspreventresponseribbon synapsesoundspiral gangliontooltranscriptome sequencingtreatment strategy
项目摘要
Project Summary
Through NIDCD funding (R21DC013172) we showed that noise-induced temporary damage to the auditory
dendrites is more severe when the exposure occurs at night compared to the day. Preliminary data strongly
suggest that circulating glucocorticoids, which peak at nighttime in mice, are responsible for the greater
sensitivity to night noise trauma. In absence of circulating glucocorticoids (by adrenalectomy), mice exposed to
night noise show complete recovery of their auditory brainstem thresholds, and have their synaptic ribbons
protected. RNAseq data show that inflammatory pathways rise at nighttime in the cochlea, and this is
abolished in adrenalectomised mice, suggesting that inflammatory response could underlie the greater
vulnerability of the auditory synapse. The RNAseq identified 7211 genes in the cochlea that have circadian
expression and 65% of these genes show maximal expression at night-time. Since it is not standard practice in
the auditory field to collect samples at different time points throughout the day a full understanding of gene
regulation during the day and the night in the cochlea is lacking. Our laboratory is currently addressing this
challenge with the following aims:
Specific Aim 1: To identify glucocorticoid-dependent inflammatory signals that display circadian
patterns and are triggered by day or night noise trauma in the cochlea. Hypothesis: GCs modulate
inflammatory signals in a circadian manner causing a greater inflammatory response to night noise trauma
compared to the day.
Specific Aim 2: To determine whether Bmal1 in the cochlea regulates the GC-dependent inflammatory
signals in response to day or night noise trauma. Hypothesis: In the cochlea, the core clock protein Bmal1
regulates the circadian cytokine release in response to noise and causing synaptopathy.
Specific Aim 3: To develop new pharmacological treatments targeting the circadian machinery to
protect from inflammatory-triggered noise-induced synaptopathy. Hypothesis: Inhibition of the clock at
nighttime can prevent night noise-induced synaptopathy via the inhibition of inflammatory responses.
This project will clarify how circadian and glucocorticoid-dependent inflammatory signals cause cochlear
synaptopathy after temporary noise trauma. A battery of functional methods (auditory electrophysiology, noise
trauma), quantitative morphological methods (cochleograms, spiral ganglion neuron counts, pre/post synaptic
counts) and molecular methods (genetic mouse models, RNA seq) will be used. Ultimately, novel drugs that
will modulate circadian rhythms could emerge to prevent and treat from noise-induced synaptopathy. Our
results will introduce a new concept to the auditory field, namely, chronopharmacology, where optimal efficacy
of drug treatment depends on the time of administration. The novel theoretical concept of this proposal is
that the optimal function of the auditory system requires periods of activity followed by rest that is
tightly regulated by clock genes. As simple and obvious as this may sound, this concept has neither
been previously explored in the context of noise trauma nor treatment strategies.
项目概要
通过 NIDCD 资助 (R21DC013172),我们发现噪声引起的听觉暂时损伤
与白天相比,夜间暴露时树突的情况更为严重。初步数据有力
表明循环中的糖皮质激素在小鼠夜间达到峰值,是导致更大的
对夜间噪音创伤敏感。在没有循环糖皮质激素的情况下(通过肾上腺切除术),小鼠暴露于
夜间噪音显示他们的听觉脑干阈值完全恢复,并有突触带
受保护。 RNAseq 数据显示耳蜗中的炎症通路在夜间上升,这是
在肾上腺切除小鼠中被废除,表明炎症反应可能是更大的基础
听觉突触的脆弱性。 RNAseq 在耳蜗中鉴定出了 7211 个与昼夜节律相关的基因
表达,其中 65% 的基因在夜间表现出最大表达。由于这不是标准做法
全天不同时间点听觉场采集样本全面了解基因
耳蜗缺乏白天和夜间的调节。我们的实验室目前正在解决这个问题
挑战目标如下:
具体目标 1:识别显示昼夜节律的糖皮质激素依赖性炎症信号
模式,并由耳蜗中的白天或夜间噪音损伤触发。假设:GC 调节
以昼夜节律方式产生炎症信号,对夜间噪音创伤产生更大的炎症反应
与当天相比。
具体目标 2:确定耳蜗中的 Bmal1 是否调节 GC 依赖性炎症
响应白天或夜间噪音创伤的信号。假设:在耳蜗中,核心时钟蛋白 Bmal1
调节昼夜节律细胞因子的释放以响应噪音并引起突触病。
具体目标 3:开发针对昼夜节律机制的新药物治疗方法
防止炎症引发的噪音引起的突触病。假设:时钟的抑制
夜间可以通过抑制炎症反应来预防夜间噪音引起的突触病。
该项目将阐明昼夜节律和糖皮质激素依赖性炎症信号如何导致耳蜗
暂时性噪音创伤后的突触病。一系列功能方法(听觉电生理学、噪声
创伤)、定量形态学方法(耳蜗图、螺旋神经节神经元计数、突触前/后
将使用分子方法(遗传小鼠模型、RNA seq)。最终,新药
调节昼夜节律可能会预防和治疗噪音引起的突触病。我们的
研究结果将为听觉领域引入一个新概念,即时间药理学,其中最佳功效
药物治疗的效果取决于给药时间。该提案的新颖理论概念是
听觉系统的最佳功能需要一段时间的活动和休息,即
受时钟基因严格调控。尽管这听起来简单明了,但这个概念既不
之前曾在噪音创伤或治疗策略的背景下进行过探索。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Circadian vulnerability of cisplatin-induced ototoxicity in the cochlea.
- DOI:10.1096/fj.202001236r
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Tserga E;Moreno-Paublete R;Sarlus H;Björn E;Guimaraes E;Göritz C;Cederroth CR;Canlon B
- 通讯作者:Canlon B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARBARA CANLON其他文献
BARBARA CANLON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARBARA CANLON', 18)}}的其他基金
PROTECTION AGAINST NOISE TRAUMA BY SOUND CONDITIONING
通过声音调节防止噪音伤害
- 批准号:
2126475 - 财政年份:1992
- 资助金额:
$ 29.24万 - 项目类别:
PROTECTION AGAINST NOISE TRAUMA BY SOUND CONDITIONING
通过声音调节防止噪音伤害
- 批准号:
2126476 - 财政年份:1992
- 资助金额:
$ 29.24万 - 项目类别:
PROTECTION AGAINST NOISE TRAUMA BY SOUND CONDITIONING
通过声音调节防止噪音伤害
- 批准号:
3218085 - 财政年份:1992
- 资助金额:
$ 29.24万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Circuit versus stress hormonal influences in consolidation of fear memory strength and precision.
电路与压力荷尔蒙对巩固恐惧记忆强度和精确度的影响。
- 批准号:
10753860 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
A First-in-Class Human Antibody Therapeutic for Treatment of Cushing's Disease
用于治疗库欣病的一流人类抗体疗法
- 批准号:
9909906 - 财政年份:2019
- 资助金额:
$ 29.24万 - 项目类别:
Skeletal Consequences of Mild Autonomous Cortisol Secretion
轻度自主皮质醇分泌对骨骼的影响
- 批准号:
9803313 - 财政年份:2019
- 资助金额:
$ 29.24万 - 项目类别:
Skeletal Consequences of Mild Autonomous Cortisol Secretion
轻度自主皮质醇分泌对骨骼的影响
- 批准号:
10160897 - 财政年份:2019
- 资助金额:
$ 29.24万 - 项目类别:
Skeletal Consequences of Mild Autonomous Cortisol Secretion
轻度自主皮质醇分泌对骨骼的影响
- 批准号:
10405659 - 财政年份:2019
- 资助金额:
$ 29.24万 - 项目类别: