Towards an understanding of telomere end protection: Cryo-EM studies of shelterin structure and function
了解端粒末端保护:Shelterin 结构和功能的冷冻电镜研究
基本信息
- 批准号:9371709
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATM Signaling PathwayATM activationAffectArchitectureAwardBindingBiochemistryCell AgingCharacteristicsChromosome StructuresChromosomesComplexComputer SimulationCoupledDNADNA BindingDNA DamageDNA StructureDefectDevelopmentDiseaseElectron MicroscopyEmbryoExhibitsFilamentFocus GroupsFoundationsFutureGene RearrangementGenesGenomeGoalsHealthHereditary DiseaseHumanImageIn VitroIndividualInterdisciplinary StudyKnock-outKnowledgeLeadLightLinkMacromolecular ComplexesMaintenanceMalignant NeoplasmsMediatingMentorsMentorshipMicrotubulesMissense MutationModelingMolecularMusNegative StainingOutcomePathway interactionsPhosphotransferasesPlayPredispositionPremature aging syndromeProtein BiochemistryProteinsRecombinantsRecruitment ActivityResearchResearch PersonnelResolutionResourcesRestRoleSamplingSingle-Stranded DNAStretchingStructureTERF1 geneTINF2 geneTestingTherapeuticTimeTrainingTraining SupportWorkbasebiochemical toolscancer cellcareerds-DNAexperiencein vivoinsightinterdisciplinary approachnanometeroverexpressionparticleprematurereconstitutionreplication factor Aresponseskillssuccesstelomere
项目摘要
Project Summary/Abstract
Telomeres are a required feature of eukaryotic linear chromosomes that serve to distinguish chromosome
ends from DNA damage, and consist of long repeating sequences of double-stranded and single-stranded DNA.
Shelterin is responsible for protecting telomere ends from the DNA-damage response (DDR) pathway. Shelterin
is crucial to cellular health, and functional defects are linked to premature aging, genetic disorders, and cancer.
Despite shelterin’s important roles in genome maintenance, little is known about the mechanism by which it
protects telomeres. Shelterin is composed of six different proteins, which assemble in a hierarchical manner and
robustly interact in vitro. It requires most components for telomere end protection, and individual knock-outs are
typically lethal. Shelterin is remodels telomere ends into a ‘t-loop’ structure. While components of shelterin have
been pinpointed as having DNA-remodeling capabilities, the molecular basis of how shelterin accomplishes this
is enigmatic. One of the key requirements to elucidating shelterin’s function, and the overall goal of these studies,
rests in determining the details of shelterin’s structural features and to examine shelterin’s molecular interactions
with DNA. The proposed research will achieve this goal using an interdisciplinary approach involving
biochemistry, computational modeling, and single-particle EM.
Thus far in my postdoctoral career in the Nogales lab at UC Berkeley, I have obtained training in high-
resolution cryo-EM structure determination of helical filaments known as microtubules. Moving forward, I plan to
focus on studying the role of shelterin in binding DNA and mediating telomere end protection using single-particle
negative stain EM and cryo-EM. To achieve these goals, I propose to: (1) Determine the architecture of shelterin
using negative stain EM, (2) use cryo-EM to determine the mechanism of single-stranded DNA protection, and
(3) use cryo-EM to examine the molecular basis of shelterin’s DNA remodeling abilities.
During the K99 training period, I will apply biochemical tools to optimize recombinant shelterin for EM
imaging and I will use single-particle EM approaches to visualize, for the first time, the structure of shelterin and
the details of shelterin-DNA interactions. I will use this information in the R00 period to build upon what I’ve
learned by studying the compositional variability of shelterin and how it affects shelterin structure and function. I
believe that the mentorship and strong background of Eva Nogales and Ahmet Yildiz together with the training
support provided by the K99/R00 award will allow me to build a strong foundation to enable my success as an
independent investigator while illuminating the molecular mechanism of shelterin’s function. The results of the
proposed studies will be to elucidate shelterin’s molecular mechanism in binding telomere DNA. This will lead
to new hypotheses that can be tested functionally, and an understanding of how shelterin-DNA interactions
contributes to telomere end structure that can be exploited for future therapeutics.
项目概要/摘要
端粒是真核线性染色体的必需特征,用于区分染色体
DNA 损伤造成的末端,由双链和单链 DNA 的长重复序列组成。
Shelterin 负责保护端粒末端免受 DNA 损伤反应 (DDR) 途径的影响。
对细胞健康至关重要,功能缺陷与过早衰老、遗传性疾病和癌症有关。
尽管庇护蛋白在基因组维护中发挥着重要作用,但人们对其机制知之甚少。
Shelterin 由六种不同的蛋白质组成,它们以分层方式组装并
它需要大多数端粒末端保护成分,并且个体敲除是有效的。
Shelterin 通常是致命的,它会将端粒末端重塑为“T 环”结构。
已被确定具有 DNA 重塑能力,这是庇护林实现这一目标的分子基础
阐明庇护蛋白功能的关键要求之一以及这些研究的总体目标,
关键在于确定庇护蛋白结构特征的细节并检查庇护蛋白的分子相互作用
拟议的研究将利用涉及 DNA 的跨学科方法来实现这一目标。
生物化学、计算模型和单粒子电磁。
到目前为止,在我在加州大学伯克利分校诺加利斯实验室的博士后生涯中,我已经获得了高级培训
分辨率冷冻电镜结构测定称为微管的螺旋丝。展望未来,我计划
专注于利用单粒子研究Shelterin在结合DNA和介导端粒末端保护中的作用
为了实现这些目标,我建议:(1)确定庇护蛋白的结构。
使用负染色电镜,(2) 使用冷冻电镜确定单链 DNA 保护机制,以及
(3)利用冷冻电镜检查Shelterin DNA重塑能力的分子基础。
在K99培训期间,我将应用生化工具优化EM重组庇护蛋白
成像,我将使用单粒子电磁方法首次可视化庇护蛋白和
我将在 R00 时期使用这些信息来构建我所掌握的信息。
通过研究庇护蛋白的组成变异性及其如何影响庇护蛋白 I 的结构和功能来了解。
相信 Eva Nogales 和 Ahmet Yildiz 的指导和强大背景以及培训
K99/R00 奖项提供的支持将为我奠定坚实的基础,使我能够成为一名成功的
独立研究者,同时阐明了庇护蛋白功能的分子机制。
拟议的研究将阐明 Shelterin 结合端粒 DNA 的分子机制。
可以进行功能测试的新假设,并了解庇护蛋白-DNA 相互作用的方式
有助于形成可用于未来治疗的端粒末端结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Kellogg其他文献
Elizabeth Kellogg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Kellogg', 18)}}的其他基金
Structural Basis of Programmable DNA-Insertion via Cryo-EM Studies of CRISPR-Associated TnsC
通过冷冻电镜研究 CRISPR 相关 TnsC 的可编程 DNA 插入的结构基础
- 批准号:
10543118 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Structural Basis of Programmable DNA-Insertion via Cryo-EM Studies of CRISPR-Associated TnsC
通过冷冻电镜研究 CRISPR 相关 TnsC 的可编程 DNA 插入的结构基础
- 批准号:
10344519 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Structural Basis of Programmable DNA-Insertion via Cryo-EM Studies of CRISPR-Associated TnsC
通过冷冻电镜研究 CRISPR 相关 TnsC 的可编程 DNA 插入的结构基础
- 批准号:
10797749 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Cryo Transmission Electron Microscope for Cryo-EM Sample Optimization
用于冷冻电镜样品优化的冷冻透射电子显微镜
- 批准号:
10177173 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Molecular Basis of Genome Organization and Integrity Using Cryo-EM
使用冷冻电镜研究基因组组织和完整性的分子基础
- 批准号:
10079493 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Molecular Basis of Genome Organization and Integrity Using Cryo-EM
使用冷冻电镜研究基因组组织和完整性的分子基础
- 批准号:
9922323 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
相似海外基金
Non-canonical roles for ATM kinase in regulating mitochondrial function and redox homeostasis
ATM 激酶在调节线粒体功能和氧化还原稳态中的非典型作用
- 批准号:
10461498 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Non-canonical roles for ATM kinase in regulating mitochondrial function and redox homeostasis
ATM 激酶在调节线粒体功能和氧化还原稳态中的非典型作用
- 批准号:
10640088 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Ataxia Telangiectasia Mutated (ATM)-mediated hepatic DNA damage in pediatric nonalcoholic fatty liver disease
共济失调毛细血管扩张突变 (ATM) 介导的儿童非酒精性脂肪性肝病中的肝 DNA 损伤
- 批准号:
10301928 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Plk1 as a prognostic biomarker for prostate cancer
Plk1 作为前列腺癌的预后生物标志物
- 批准号:
10664904 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10353124 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别: