Translational Control by the Fragile X Mental Retardation Protein
脆性 X 智力迟钝蛋白的翻译控制
基本信息
- 批准号:9199419
- 负责人:
- 金额:$ 35.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:AmericanAmino AcidsAnimal ModelBehavioralBindingBinding ProteinsBiochemicalBiological AssayBrainCessation of lifeChildhoodCodeComplexCryoelectron MicroscopyDataDevelopmentDiseaseDrosophila FMR1 proteinDrosophila genusDrosophila inturned proteinDrug TargetingExhibitsFMR1FMRPFXR1 geneFXR2 geneFacioscapulohumeral Muscular DystrophyFluorescenceFragile X SyndromeG-QuartetsGenesGeneticGenetic TranscriptionGoalsHumanHuman Cell LineIn VitroInheritedIntellectual functioning disabilityLaboratoriesMammalsMental RetardationMessenger RNAMolecularMonitorMusMuscle DevelopmentMuscular DystrophiesMyocardiumPatientsPhenotypePrevalenceProtein BiosynthesisProteinsRNARNA-Binding ProteinsRegulationReporterResolutionRibosomesRoleSeizuresSkeletal MuscleSpecificityStructureSystemTechniquesTransgenic OrganismsTranslationsautistic behaviourbasebiophysical techniquesexperimental studyfetalflyin vivoinsightinterestmRNA Expressionmalemyogenesisnervous system disordernovel therapeuticsparalogous geneprotein complexprotein functionpublic health relevancetooltranslation factor
项目摘要
DESCRIPTION (provided by applicant)
Fragile X syndrome is a disease that afflicts about 100,000 Americans and about 3 million people worldwide, resulting in intellectual disability, childhood seizures, and autistic behavior i the patients. The disease is caused by the transcriptional silencing of the fragile X mental retardation 1 gene (FMR1). FMR1 gene codes for a RNA-binding protein, the fragile X mental retardation protein (FMRP), which is highly expressed in the brain and is essential for the normal development of the brain. Mammals have two autosomal paralogs of FMRP designated as fragile X related 1 and 2 (FXR1 and FXR2) proteins. FXR1 is essential for myogenesis and the altered expression of FXR1 causes facioscapulohumeral muscular dystrophy, the most prevalent form of muscular dystrophy. Inactivation of FXR2 does not cause a disease in humans; however, loss of both FMRP and FXR2 results in a more severe form of FXS in mice and Drosophila. Thus, FMRP and FXR2 appear to have overlapping functions in the brain, whereas FXR1 is more critical for muscle development. FMRP, FXR1 and FXR2 have been implicated in regulating the translation of several mRNAs. However, the precise mechanism by which these proteins regulate the expression of these mRNAs is unknown. The goal of the proposed study is to understand the molecular mechanism underlying the regulation of protein synthesis by FMRP, FXR1 and FXR2. We have strong initial results showing that FMRP can bind directly to the 80S ribosome to regulate protein synthesis. In Specific Aim 1, we will dissect
the mechanism of translational control by Drosophila FMRP. In Specific Aim 2, we will focus on the mechanism of translational control by human FMRP, FXR1 and FXR2. For both specific aims, we will use a robust in vitro translation system and quantitative biophysical methods that have been developed in our laboratory, and in vivo studies, using human cell lines and transgenic Drosophila. These functional analyses, in conjunction with the proposed high-resolution cryo-electron microscopy, will significantly advance our understanding of the molecular mechanism used by FMRP, FXR1 and FXR2 to regulate protein synthesis. Results of these studies will provide useful insights in identifying potential drug targets to treat fragile X
syndrome and facioscapulohumeral muscular dystrophy.
描述(由申请人提供)
脆弱的X综合征是一种疾病,在全球范围内遭受约100,000名美国人和约300万人的疾病,导致智力残疾,儿童癫痫发作和患者加速行为。该疾病是由脆弱的X智力低下1基因(FMR1)的转录沉默引起的。 FMR1基因编码RNA结合蛋白,即脆弱的X智力低下蛋白(FMRP),该蛋白在大脑中高度表达,对于大脑的正常发育至关重要。哺乳动物具有指定为脆弱X相关1和2(FXR1和FXR2)蛋白的FMRP的两个常染色体旁系同源物。 FXR1对于肌发生至关重要,FXR1的表达改变会导致肌肉旋转肌肉营养不良,这是最普遍的肌肉营养不良形式。 FXR2的失活不会引起人类疾病;然而,FMRP和FXR2的丧失导致小鼠和果蝇中更严重的FXS形式。这是FMRP和FXR2在大脑中似乎具有重叠的功能,而FXR1对于肌肉发育更为重要。 FMRP,FXR1和FXR2已在调节几个mRNA中实施。但是,这些蛋白质调节这些mRNA表达的精确机制尚不清楚。拟议的研究的目的是了解FMRP,FXR1和FXR2调节蛋白质合成的基础机制。我们的初始结果表明,FMRP可以直接与80S核糖体结合以调节蛋白质合成。在特定目标1中,我们将剖析
果蝇FMRP翻译控制的机制。在特定的目标2中,我们将重点介绍人FMRP,FXR1和FXR2的翻译控制机制。对于这两个特定目标,我们将使用在我们的实验室中开发的强大体外翻译系统和定量生物物理方法,并使用人类细胞系和转基因果蝇进行体内研究。这些功能分析与提议的结合。高分辨率的冷冻电子显微镜将显着提高我们对FMRP,FXR1和FXR2用于调节蛋白质合成的分子机制的理解。这些研究的结果将提供有用的见解,以识别潜在的药物靶标以治疗脆弱的X
综合征和Facioscapulohumeral肌肉营养不良。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SIMPSON JOSEPH其他文献
SIMPSON JOSEPH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SIMPSON JOSEPH', 18)}}的其他基金
Mechanism of Protein Synthesis and Translational Control
蛋白质合成与翻译控制机制
- 批准号:
10581388 - 财政年份:2021
- 资助金额:
$ 35.48万 - 项目类别:
Mechanism of Protein Synthesis and Translational Control
蛋白质合成与翻译控制机制
- 批准号:
10207047 - 财政年份:2021
- 资助金额:
$ 35.48万 - 项目类别:
Mechanism of Protein Synthesis and Translational Control
蛋白质合成与翻译控制机制
- 批准号:
10631100 - 财政年份:2021
- 资助金额:
$ 35.48万 - 项目类别:
Mechanism of Protein Synthesis and Translational Control
蛋白质合成与翻译控制机制
- 批准号:
10414150 - 财政年份:2021
- 资助金额:
$ 35.48万 - 项目类别:
Interaction of Influenza A virus NS1 protein with PABP1 and eIF4G
甲型流感病毒 NS1 蛋白与 PABP1 和 eIF4G 的相互作用
- 批准号:
9243088 - 财政年份:2016
- 资助金额:
$ 35.48万 - 项目类别:
Molecular Role of 16S Ribosomal RNA in Translocation
16S 核糖体 RNA 在易位中的分子作用
- 批准号:
6462889 - 财政年份:2002
- 资助金额:
$ 35.48万 - 项目类别:
相似国自然基金
氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
- 批准号:32371222
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
- 批准号:82300940
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群紊乱导致支链氨基酸减少调控Th17/Treg平衡相关的肠道免疫炎症在帕金森病中的作用和机制研究
- 批准号:82301621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氨基酸调控KDM4A蛋白N-末端乙酰化修饰机制在胃癌化疗敏感性中的作用研究
- 批准号:82373354
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Validation of the joint-homing and drug delivery attributes of novel peptides in a mouse arthritis model
在小鼠关节炎模型中验证新型肽的关节归巢和药物递送特性
- 批准号:
10589192 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
A Potent D-peptide Inhibitor of TNFα for Treatment of Rheumatoid Arthritis
一种有效的 TNFα D 肽抑制剂,用于治疗类风湿性关节炎
- 批准号:
10822182 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
CD98hc Brain Shuttles for Delivering Off-the-shelf Neuroprotective Antibodies in Alzheimer's Disease
CD98hc 脑穿梭机为阿尔茨海默病提供现成的神经保护抗体
- 批准号:
10566062 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
Hypusine as a nutrient-sensing modulator of eIF5A function in β cells
Hypusine 作为 β 细胞中 eIF5A 功能的营养感应调节剂
- 批准号:
10679499 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别: