Can Cortical Plasticity be Directed and Amplified Following Early Loss of Vision?
早期视力丧失后皮质可塑性可以被引导和增强吗?
基本信息
- 批准号:8600683
- 负责人:
- 金额:$ 36.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAnimal ModelAnimalsAreaAuditory systemAxonBehaviorBehavioralBilateralBirthBlindnessBrainCell DensityChildDevelopmentDidelphidaeEnhancersEnhancing LesionEnvironmentExhibitsEyeFetusFinancial compensationFrequenciesHumanIndividualInfantInjuryInterventionInvadedInvestigationKnowledgeLesionMammalsMediatingModalityMonodelphisMonodelphis DomesticaNeocortexNervous system structureNeuronsNewborn InfantPerinatalPlayPropertyRecoveryResearchRetinaRetinalRetinal Ganglion CellsRoleSensoryStagingStructureSystemTactileTechniquesTestingTextureThalamic structureTherapeuticTherapeutic InterventionTimeTranslatingVisualVisual AcuityVisual CortexVisual impairmentVisual system structurebehavior testblindbrain shapedensitydiencephalondriving behaviorextrastriate visual cortexin uteromultisensorynovelprematureprenatalpublic health relevancerelating to nervous systemresponsesensory discriminationsomatosensorysubventricular zonetherapy designvisual processvisual processing
项目摘要
DESCRIPTION (provided by applicant): A distinguishing feature of the mammalian neocortex is its remarkable ability to change over a lifetime, especially during early development. Thus, the
functional organization and connectivity of each individual's brain is tailored to the physical parameters of a specific environment, permitting behavior to be uniquely optimized for a given sensory milieu. Such plasticity plays an integral role in shaping the brains of normal humans as well those who suffer from severe visual impairments due to retinal abnormalities or cortical lesions that occur at various stages of development. This proposal will investigate the extent of cortical plasticity following experimentally induced manipulations to the visual system during development. Our first objective is to examine the alterations in sensory mediated behavior, as well as changes in the functional organization, connectivity and cellular composition of the neocortex that result from one of two induced neural insults: 1) loss of neocortex that would normally develop into visual cortex; 2) loss of visual input normally provided by the retina. The second objective is to determine if early, pervasive sensory enhancement can be used to direct the functional reorganization of the neocortex and optimize sensory mediated behavior. Manipulations will be made at one of three developmental milestones: 1) Before retinal ganglion cell axons enter the diencephalon and before thalamocortical afferents have reached the cortex. 2) Before eye opening, after thalamocortical afferents have innervated the neocortex, but before axonal pruning and the completion of cortical development. 3) Just after the eyes have opened, when retinofugal and thalamocortical development is established and the subventricular zone and all six cortical layers are present. These animals will be exposed to either a normal or to a tactilely (for bilateral enucleates) or visually (for cortical lesions) enhanced environment. Our animal model, the short-tailed opossum (Monodelphis domestica) is born prematurely, allowing ex-utero manipulations to the nervous system at developmental time points that would be in-utero in other mammals. After the animals have reached maturity we will use behavioral testing combined with electrophysiological and neuroanatomical techniques to examine sensory discrimination, the functional organization and neural response properties of re-organized cortex, cortical and thalamic connectivity, and the cellular composition including neuronal number and density of re-organized cortex. These studies, which are novel in their scope, provide an opportunity to translate detailed knowledge gained at the cellular and systems level to produce significant therapeutic interventions designed to direct multisensory plasticity, and optimize sensory mediated behavior following loss of vision.
描述(由申请人提供):哺乳动物新皮质的一个显着特征是其在一生中特别是在早期发育过程中显着的变化能力。因此,
每个人大脑的功能组织和连接都是根据特定环境的物理参数量身定制的,从而允许针对给定的感官环境对行为进行独特的优化。这种可塑性在塑造正常人以及由于不同发育阶段发生的视网膜异常或皮质病变而遭受严重视力障碍的人的大脑方面发挥着不可或缺的作用。该提案将研究发育过程中对视觉系统进行实验诱导操作后皮质可塑性的程度。我们的第一个目标是检查感觉介导的行为的改变,以及新皮质的功能组织、连接性和细胞组成的变化,这些变化是由两种诱发的神经损伤之一引起的:1)通常会发育成视觉的新皮质的丧失皮质; 2)通常由视网膜提供的视觉输入丧失。第二个目标是确定早期普遍的感觉增强是否可用于指导新皮质的功能重组并优化感觉介导的行为。将在三个发育里程碑之一进行操作:1)在视网膜神经节细胞轴突进入间脑之前和丘脑皮质传入神经到达皮质之前。 2)在睁眼之前,在丘脑皮质传入神经支配新皮质之后,但在轴突修剪和皮质发育完成之前。 3) 眼睛刚睁开后,离视网膜和丘脑皮质发育已建立,并且脑室下区和所有六个皮质层均已出现。这些动物将暴露于正常或触觉(对于双侧去核)或视觉(对于皮质病变)增强的环境。我们的动物模型,短尾负鼠(Monodelphis Domestica)是早产的,允许在发育时间点对神经系统进行宫外操作,而这在其他哺乳动物的子宫内是可以进行的。动物成熟后,我们将使用行为测试结合电生理学和神经解剖学技术来检查感觉辨别、重组皮质的功能组织和神经反应特性、皮质和丘脑的连接性以及细胞组成,包括神经元数量和密度。重新组织皮质。这些研究在范围上是新颖的,提供了一个机会,可以将在细胞和系统水平上获得的详细知识转化为重要的治疗干预措施,旨在指导多感觉可塑性,并优化视力丧失后的感觉介导的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEAH ANN KRUBITZER其他文献
LEAH ANN KRUBITZER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEAH ANN KRUBITZER', 18)}}的其他基金
Cross modal plasticity following loss of vision at different developmental stages: Cortical function, connections and compensatory behavior
不同发育阶段视力丧失后的跨模式可塑性:皮质功能、连接和补偿行为
- 批准号:
10666604 - 财政年份:2022
- 资助金额:
$ 36.75万 - 项目类别:
Cross modal plasticity following loss of vision at different developmental stages: Cortical function, connections and compensatory behavior
不同发育阶段视力丧失后的跨模式可塑性:皮质功能、连接和补偿行为
- 批准号:
10504252 - 财政年份:2022
- 资助金额:
$ 36.75万 - 项目类别:
The impact of the environment on sensorimotor cortex in rats: Functional organization, connections and behavior
环境对大鼠感觉运动皮层的影响:功能组织、连接和行为
- 批准号:
10117139 - 财政年份:2021
- 资助金额:
$ 36.75万 - 项目类别:
The impact of the environment on sensorimotor cortex in rats: Functional organization, connections and behavior
环境对大鼠感觉运动皮层的影响:功能组织、连接和行为
- 批准号:
10553708 - 财政年份:2021
- 资助金额:
$ 36.75万 - 项目类别:
The impact of the environment on sensorimotor cortex in rats: Functional organization, connections and behavior
环境对大鼠感觉运动皮层的影响:功能组织、连接和行为
- 批准号:
10337134 - 财政年份:2021
- 资助金额:
$ 36.75万 - 项目类别:
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9030107 - 财政年份:2015
- 资助金额:
$ 36.75万 - 项目类别:
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9197675 - 财政年份:2015
- 资助金额:
$ 36.75万 - 项目类别:
Effects of Reversible Deactivation of Posterior Parietal Cortex in New World Cebu
宿雾新世界后顶叶皮质可逆失活的影响
- 批准号:
8826837 - 财政年份:2013
- 资助金额:
$ 36.75万 - 项目类别:
Effects of Reversible Deactivation of Posterior Parietal Cortex in New World Cebu
宿雾新世界后顶叶皮质可逆失活的影响
- 批准号:
8209990 - 财政年份:2013
- 资助金额:
$ 36.75万 - 项目类别:
Can Cortical Plasticity be Directed and Amplified Following Early Loss of Vision?
早期视力丧失后皮质可塑性可以被引导和增强吗?
- 批准号:
8821621 - 财政年份:2013
- 资助金额:
$ 36.75万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
- 批准号:
10556087 - 财政年份:2023
- 资助金额:
$ 36.75万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 36.75万 - 项目类别:
Inferring multi-scale dynamics underlying behavior in aging C. elegans
推断衰老线虫行为背后的多尺度动力学
- 批准号:
10638631 - 财政年份:2023
- 资助金额:
$ 36.75万 - 项目类别:
In vivo calcium imaging during appetitive learning in HIV Tat transgenic mice exposed to cannabis
暴露于大麻的 HIV Tat 转基因小鼠食欲学习过程中的体内钙成像
- 批准号:
10696442 - 财政年份:2023
- 资助金额:
$ 36.75万 - 项目类别: