Drug Effect Discovery Through Data Mining and Integrative Chemical Biology
通过数据挖掘和综合化学生物学发现药物作用
基本信息
- 批准号:9282587
- 负责人:
- 金额:$ 48.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdverse drug effectAdverse drug eventAdverse effectsAdverse eventAlgorithmsBeesBindingBiological ModelsBiologyChemicalsClinicalClinical TrialsCombined Modality TherapyDataData AnalysesData ElementData ReportingDatabasesDetectionDevelopmentDrug CombinationsDrug InteractionsDrug ModelingsDrug MonitoringDrug TargetingElectronic Health RecordEtiologyFederal AidHealthHyperglycemiaHypertensionInstitutionInsuranceKnowledgeLinkMedicalMetabolismMethodologyMethodsMiningModernizationMolecularMonitorOutcomePathology ReportPathway AnalysisPathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPharmacy facilityPhenotypePhysiologicalPilot ProjectsPopulationProteinsRecordsResearchResearch PersonnelResourcesSafetySamplingSentinelSignal TransductionSurveillance MethodsSystemSystems BiologyUnited States Food and Drug AdministrationValidationbaseclinical Diagnosisclinical careclinical data warehousecohortcombinatorialdata managementdata miningdemographicsdesigndrug developmentdrug withdrawalhuman diseaseinnovationnovelnovel therapeuticsphase 3 studyphase III trialpredictive modelingpredictive toolsprospectivepublic health relevancepublic-private partnershipresponsesecondary analysissmall moleculesurveillance strategytool
项目摘要
DESCRIPTION (provided by applicant): Small molecule drugs are the cornerstone of modern medical practice. However, their use is plagued by the onset of unexpected side effects, often seen only in late-stage clinical trials or after release to the market. As a result, there have bee a number of high profile drug withdrawals and a dearth of new drug development. Characterizing the combinatorial effects of drug treatment is of particular concern. It is very difficult to empirically study these interactions before drugs enter the market because of the small samples of co- prescribed drugs in most late stage clinical drug (Phase III) studies. Some interactions can be predicted based on knowledge of shared pathways of metabolism, but many are idiosyncratic and difficult to predict. Thus, we must create surveillance methods to detect unexpected drug effects and interactions that leverage the power of large-scale clinical databases such as the electronic health records. Mining of electronic health record data for the purpose of identifying adverse drug effects is an increasingly important research challenge. For example, in response to a congressional mandate the Food and Drug Administration (FDA) established the mini-sentinel initiative in 2009 -- a pilot study that links claims and administratve data from over 31 institutions for the purpose of monitoring drug safety surveillance. In addition,
public-private partnerships (e.g. the Observational Medical Outcomes Partnership) have sprouted to establish data management and analysis standards for safety surveillance. However, the potential of the EHR for drug surveillance is paralleled by an equal number of challenges. Many of these challenges are in the quality (or rather lack thereof) of data when used for secondary analyses. Data stored in the EHR are often dirty, noisy, and missing. In addition to issues regarding data capture, these data also suffer from bias which confounds analysis and makes data mining results difficult to interpret. These issues become especially acute in the context of combination therapies where the exposed patient cohorts are often small and suffer from unknown (i.e. unstudied) biases. In this proposal we present a drug safety surveillance strategy which integrates state-of-the-art signal detection algorithms with chemical systems biology data for the purpose of identifying unexpected effects of combination therapies. We present an integrative methodology which combines quantitative signal detection and chemical systems biology to mine drug effects from a large clinical database. This will require innovations in observational statistical data mining, network analysis, and integrative chemical systems biology. The result will be a set of tools for discovering drug effects and linking them to
molecular interaction networks. These resources will aid federal regulators to better monitor the safety of drugs at the population level, pharmacologists who wish to understand the effects of drugs at the physiological level, and drug development researchers to explore new treatments of human disease.
描述(由申请人提供):小分子药物是现代医学实践的基石。但是,它们的使用受到意外副作用的开始困扰,通常仅在后期临床试验中或发布到市场后看到。结果,蜜蜂有许多知名的药物提取和新药物开发的匮乏。表征药物治疗的组合作用特别关注。由于在大多数晚期临床药物(III阶段)研究中,在药物进入市场之前,在药物进入市场之前的经验相互作用非常困难。可以根据对代谢的共同途径的了解来预测某些相互作用,但是许多相互作用是特质且难以预测的。因此,我们必须创建监视方法,以检测出意外的药物影响和相互作用,以利用大规模临床数据库(例如电子健康记录)的功能。为了识别不良药物影响,电子健康记录数据的挖掘是越来越重要的研究挑战。例如,为了应对国会授权,食品药品监督管理局(FDA)于2009年建立了迷你赛计划 - 一项试点研究,将31多家机构的主张和管理数据联系起来,目的是监测药物安全监视。此外,
公私合作伙伴关系(例如,观察性医疗成果伙伴关系)已发芽,以建立安全监视的数据管理和分析标准。但是,EHR对药物监测的潜力与同等数量的挑战相似。这些挑战中的许多挑战在用于二次分析时质量(或更确切地说是缺乏数据)。 EHR中存储的数据通常很脏,嘈杂且缺少。除了有关数据捕获的问题外,这些数据还遭受了混淆分析并使数据挖掘结果难以解释的偏见。这些问题在联合疗法的背景下变得尤为严重,因为裸露的患者队列通常很小并且患有未知(即未研究)的偏见。在此提案中,我们提出了一种药物安全监视策略,该策略将最先进的信号检测算法与化学系统生物学数据相结合,目的是确定联合疗法的意外影响。我们提出了一种综合方法,该方法将定量信号检测和化学系统生物学结合起来,从大型临床数据库中挖掘药物效应。这将需要在观察性统计数据挖掘,网络分析和集成化学系统生物学中进行创新。结果将是一组发现药物效应并将其联系到的工具
分子相互作用网络。这些资源将有助于联邦监管机构更好地监测人口一级的药物安全,希望了解药物在生理水平上的影响的药理学家,以及药物开发研究人员探索人类疾病的新治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas P Tatonetti其他文献
Nicholas P Tatonetti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas P Tatonetti', 18)}}的其他基金
Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy
数据驱动的药物发现:研究安全性和有效性的分子机制
- 批准号:
9920189 - 财政年份:2019
- 资助金额:
$ 48.46万 - 项目类别:
Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy
数据驱动的药物发现:研究安全性和有效性的分子机制
- 批准号:
10833947 - 财政年份:2019
- 资助金额:
$ 48.46万 - 项目类别:
Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy
数据驱动的药物发现:研究安全性和有效性的分子机制
- 批准号:
10433846 - 财政年份:2019
- 资助金额:
$ 48.46万 - 项目类别:
Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy
数据驱动的药物发现:研究安全性和有效性的分子机制
- 批准号:
10393864 - 财政年份:2019
- 资助金额:
$ 48.46万 - 项目类别:
Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy
数据驱动的药物发现:研究安全性和有效性的分子机制
- 批准号:
10625365 - 财政年份:2019
- 资助金额:
$ 48.46万 - 项目类别:
Drug Effect Discovery Through Data Mining and Integrative Chemical Biology
通过数据挖掘和综合化学生物学发现药物作用
- 批准号:
8901230 - 财政年份:2014
- 资助金额:
$ 48.46万 - 项目类别:
Drug Effect Discovery Through Data Mining and Integrative Chemical Biology
通过数据挖掘和综合化学生物学发现药物作用
- 批准号:
8696226 - 财政年份:2014
- 资助金额:
$ 48.46万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 48.46万 - 项目类别:
Pre-clinical testing of low intensity ultrasound as novel strategy to prevent paclitaxel-induced hair follicle damage in a humanized mouse model of chemotherapy-induced alopecia
低强度超声的临床前测试作为预防化疗引起的脱发人源化小鼠模型中紫杉醇引起的毛囊损伤的新策略
- 批准号:
10722518 - 财政年份:2023
- 资助金额:
$ 48.46万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 48.46万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 48.46万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 48.46万 - 项目类别: