Reverse Mitochondrial Genetics Enabled by Blast

Blast 实现反向线粒体遗传学

基本信息

  • 批准号:
    9444321
  • 负责人:
  • 金额:
    $ 3.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Mitochondria are essential organelles for mammalian cells. They produce energy (ATP) and TCA cycle metabolites for biosynthetic processes, regulate intracellular Ca2+ flux and Fe-S cluster synthesis, and initiate apoptosis. To assemble a mitochondrion, proteins and RNAs encoded by both the mitochondrial (mtDNA) and nuclear (gDNA) genomes are required. In humans, only 13 of >1,000 proteins that comprise a mitochondrion are encoded within maternally inherited ~16.6kb mtDNA, but these 13 proteins are essential components of the electron transport chain that enables cellular respiration. Mutations in mtDNA affecting the translation, assembly, or function of these 13 proteins results in > 200 named mitochondrial disease syndromes that affect high energy organs such as the brain, muscle, or heart and often result in early death. Unfortunately, there are no effective therapies or supportive measures for mtDNA diseases. The main hope is to eventually correct or compensate for deleterious mtDNA mutations. However, an almost complete field block exists for altering mtDNA, in contrast to comparatively ready access for altering gDNA sequences. Numerous labs are trying to develop mitochondrial reverse genetics, in which altering mtDNAs generates phenotypes for study. However, current approaches are inefficient, poorly controlled stochastic processes often with ethical concerns over the cell source materials. Several labs have managed to isolate, modify, and re-introduce altered mtDNA back into mitochondria in vitro and shown transcriptional activity, strongly suggesting assembly into nucleic acid-protein aggregates called nucleoids. However, there is no way to reintroduce these mtDNA engineered mitochondria back into cells for functional, system-wide studies. Here, we propose to enable mitochondrial reverse genetics and provide an initial approach for correcting devastating mtDNA mutations. In a longstanding collaboration, the Chiou and Teitell labs invented a photothermal nanoblade that can transfer native or engineered mitochondria into mammalian cells and rescue defects in cellular respiration. However, the skill required, slow speed, and bulk system size of our current nanoblade leads to many failed experiments and precludes wide adoption of this approach. To overcome these inhibitory issues, we propose 3 specific study aims. In Aim 1, we will generate a high throughput, compact, microfluidic platform for massively parallel mitochondrial delivery that we call BLAST. In Aim 2, we will deploy BLAST to generate or correct specific mtDNA mutations that cause 3 human disease syndromes with native mitochondrial transfers. And in Aim 3, we will alter mtDNA and utilize BLAST to generate hybrid cell lines by transfer of in vitro modified mitochondria back into cells for thorough evaluation of functional activity, including system-wide carbon tracing studies that have been impossible to perform. Combined, our engineering and molecular biology cross-disciplinary approaches will enable the targeted alteration of mtDNA for both fundamental, basic studies and the beginnings of future translational applications in mitochondrial medicine.
 描述(由适用提供):线粒体是哺乳动物细胞的必不可少的细胞器。它们产生能量(ATP)和TCA循环代谢物进行生物合成过程,调节细胞内CA2+通量和Fe-S簇合成,并启动凋亡。为了组装线粒体,需要由线粒体(mtDNA)和核(GDNA)基因组编码的蛋白质和RNA。在人类中,构成线粒体的> 1,000个蛋白质中只有13个在主要遗传的〜16.6kb mtDNA中编码,但是这13种蛋白是电子传输链的必不可少的成分,可以实现细胞呼吸。影响这13种蛋白质的翻译,组装或功能的mtDNA突变导致> 200个称为线粒体疾病综合征,这些综合症会影响高能量器官,例如大脑,肌肉或心脏,并且常常导致早期死亡。不幸的是,没有有效的mtDNA疾病疗法或支持措施。主要希望是最终纠正或补偿有害的mtDNA突变。但是,与更改GDNA序列的相对访问相反,几乎完全可以改变mtDNA的磁场。许多实验室试图开发线粒体反向遗传学,其中改变mtdnas会产生用于研究的表型。但是,当前的方法效率低下,控制不良的随机过程通常对细胞源材料有道德问题。几个实验室已设法在体外隔离,修改和重新引入的mtDNA恢复到线粒体并显示转录活性,强烈建议将组装成核酸蛋白质聚集体中,称为核苷。但是,没有办法将这些MTDNA工程的线粒体重新引入细胞中进行功能,全系统研究。在这里,我们提出要实现线粒体反向遗传学,并为纠正毁灭性mtDNA突变提供了初始方法。在长期的合作中,Chiou和Teitell Labs发明了一种光热纳米刀片,可以将天然或工程的线粒体转移到哺乳动物细胞中,并在细胞呼吸中挽救缺陷。但是,我们目前的纳米刀片所需的技能,慢速和批量系统大小导致许多失败的实验,并且排除了这种方法的广泛采用。为了克服AIM 1,我们将生成一个高通量,紧凑的微流体平台,以大规模平行的线粒体传递,我们称为BLAST。在AIM 2中,我们将部署BLAST,以产生或纠正特定的mtDNA突变,这些突变引起3种具有天然线粒体转移的人类疾病综合征。在AIM 3中,我们将通过将体外修饰的线粒体转移回细胞中,以彻底评估功能活性,包括无法执行的碳跟踪研究,以彻底评估功能活性,从而改变mtDNA并利用爆炸来产生杂化细胞系。结合在一起,我们的工程和分子生物学跨学科方法将使MTDNA的靶向改变是基础,基础研究和线粒体医学中未来翻译应用的开始。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

暂无数据

数据更新时间:2024-06-01

Pei-Yu Chiou的其他基金

SPOTs: Optical Technologies for Instantly Quantifying Multicellular Response Profiles
SPOT:用于即时量化多细胞响应曲线的光学技术
  • 批准号:
    10392462
    10392462
  • 财政年份:
    2020
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别:
SPOTs: Optical Technologies for Instantly Quantifying Multicellular Response Profiles
SPOT:用于即时量化多细胞响应曲线的光学技术
  • 批准号:
    10609422
    10609422
  • 财政年份:
    2020
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别:
SPOTs: Optical Technologies for Instantly Quantifying Multicellular Response Profiles
SPOT:用于即时量化多细胞响应曲线的光学技术
  • 批准号:
    10160919
    10160919
  • 财政年份:
    2020
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别:
Microfluidics-Integrated Photothermal Nanoblade for High-Throughput Large Cargo D
用于高通量大型货物 D 的微流控集成光热纳米刀片
  • 批准号:
    8399012
    8399012
  • 财政年份:
    2011
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别:
Microfluidics-Integrated Photothermal Nanoblade for High-Throughput Large Cargo D
用于高通量大型货物 D 的微流控集成光热纳米刀片
  • 批准号:
    8225967
    8225967
  • 财政年份:
    2011
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别:

相似国自然基金

来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
  • 批准号:
    42377093
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
  • 批准号:
    42377233
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
老化过程对沙尘辐射效应和反馈机制的影响研究
  • 批准号:
    42375107
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
生物炭原位修复底泥PAHs的老化特征与影响机制
  • 批准号:
    42307107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
  • 批准号:
    42307479
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improving Patient-Centered Decision-Making for Stress Urinary Incontinence Treatment in Older Men
改善老年男性压力性尿失禁治疗中以患者为中心的决策
  • 批准号:
    10729838
    10729838
  • 财政年份:
    2023
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别:
Breaking prolonged sitting with high-intensity interval training to improve cognitive and brainhealth in older adults: A pilot feasibility trial
通过高强度间歇训练打破久坐以改善老年人的认知和大脑健康:一项试点可行性试验
  • 批准号:
    10742157
    10742157
  • 财政年份:
    2023
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别:
High-Resolution Flow Imaging of Optic Nerve Head and Retrolaminar Microvascular Circulation
视神经乳头和层后微血管循环的高分辨率血流成像
  • 批准号:
    10649225
    10649225
  • 财政年份:
    2023
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别:
Vitamin D and Healthy Aging: Establishing the Sled Dog Sentinel for the Circumpolar North
维生素 D 与健康老龄化:为北极圈建立雪橇犬哨兵
  • 批准号:
    10649356
    10649356
  • 财政年份:
    2023
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别:
Promoting circadian rhythms to optimize gut-to-brain signaling for Alzheimer's disease
促进昼夜节律,优化阿尔茨海默病的肠道到大脑信号传导
  • 批准号:
    10717948
    10717948
  • 财政年份:
    2023
  • 资助金额:
    $ 3.19万
    $ 3.19万
  • 项目类别: