RNA Targets for Fragile X Mental Retardation Protein
脆性 X 智力迟钝蛋白的 RNA 靶标
基本信息
- 批准号:9357716
- 负责人:
- 金额:$ 25.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-26 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAnabolismAnimal ModelAutistic DisorderBindingBinding ProteinsBinding SitesBiochemicalBioinformaticsBiological AssayBrainCategoriesCell physiologyCharacteristicsConflict (Psychology)CrystallizationDataData SetDefectDevelopmentDiseaseElementsFMR1Fragile X SyndromeGeneticGenetic TranscriptionGenetic TranslationGoalsHumanHuman ActivitiesInheritedIntellectual functioning disabilityKH DomainKnowledgeLearningLeftMediatingMedicalMemoryMental RetardationMessenger RNAMethodsMissionMolecularMutationNervous System PhysiologyNeurologicNeuronsPathogenesisPlayProcessProtein BiosynthesisProtein EngineeringProteinsPublic HealthPublishingRNARNA BindingRNA Recognition MotifRNA SequencesRNA-Binding ProteinsRNA-Protein InteractionReportingResearch PersonnelRibosomal ProteinsRibosomesRoentgen RaysRoleSpecificityStructureSynapsesSynaptic plasticitySyndromeTertiary Protein StructureTestingTherapeuticTranslational RepressionTranslationsUnited States National Institutes of HealthUntranslated RNAVariantX-Ray Crystallographybasecombinatorialdesignexperimental studyfunctional losshigh rewardhigh riskhuman diseaseimpressioninsightlong term memorymutantneurological pathologynext generation sequencingnovelnovel strategiesnovel therapeutic interventionprotein function
项目摘要
Summary
mRNA-binding proteins play a pivotal role in the development and function of the nervous system and defects
in the function of these proteins underlie a broad spectrum of neurological pathologies. Fragile X Mental
Retardation Protein (FMRP) is a paradigm of disease-associated RNA-binding proteins because of its essential
contribution to the development and activity of the brain and its central role in several human disorders that
affect hundreds of thousands people. The loss of FMRP due to transcriptional silencing or protein mutations
leads to Fragile X syndrome (FXS), a common familial cause of inherited intellectual disability and autism that
currently lacks an efficient medical treatment. On the molecular level, the absence of functional FMRP results
in exaggerated protein biosynthesis that is normally held in check by FMRP-mediated translational repression
of selected mRNAs. Previous studies have reported mostly conflicting datasets of FMRP targets, and despite
its vital importance, the mechanism of mRNA selection by FMRP remains unclear. This lack of definitive
knowledge on the principles of FMRP-RNA recognition limits both understanding of FXS and the development
of rational therapeutic approaches for its treatment. Our preliminary structural data suggest that FMRP can
bind RNA in sequence-specific manner and that RNA binding of FMRP is not truly promiscuous. The objective
of this proposal is to determine specific RNA targets for human FMRP and understand the molecular principles
of FMRP-RNA recognition. The hypothesis is that RNA-binding domains of FMRP recognize RNA sequence-
specifically and that combinations of these RNA motifs determine binding to natural RNAs. To test this
hypothesis, FMRP binding sites will be identified using a novel biochemical approach and structural studies.
Specific Aim 1 is devoted to identification of short RNA sequences that bind specifically to isolated KH domains
of FMRP by using a novel “bottom-up” approach that combines RNA capture experiments with Next
Generation Sequencing. Specific Aim 2 will characterize the molecular features of FMRP that are essential for
specific RNA binding by using biochemical methods and X-ray crystallography. Specific Aim 3 will aim to
develop mutant FMRP proteins with altered RNA specificity to study various FMRP functions. Together, these
results will define RNA sequence elements required for interactions with FMRP, help to identify natural RNA
targets of FMRP, and design mutant FMRP proteins to interrogate various FMRP functions in the animal
models of FXS. The proposal is highly relevant to public health and the NIH mission since it will provide
insights on the RNA recognition and the mechanism of FMRP-mediated translational inhibition, the activities
associated with development of FXS, autism and other disorders. Understanding how FMRP functions will
advance searches for novel therapeutic interventions against FXS and related diseases.
概括
mRNA结合蛋白在神经系统的发展和功能和缺陷中起关键作用
这些蛋白质的功能是广泛的神经病理学。脆弱的X精神
延迟蛋白(FMRP)是与疾病相关的RNA结合蛋白的范式,因为其必不可少
对大脑发展和活动的贡献及其在几种人类疾病中的核心作用
影响成千上万的人。由于转录沉默或蛋白质突变而导致的FMRP丢失
导致脆弱的X综合征(FXS),这是遗传性智障和自闭症的常见家庭原因,
目前缺乏有效的医疗。在分子水平上,缺乏功能性FMRP结果
在夸张的蛋白质生物合成中通常通过FMRP介导的翻译表示
选定的mRNA。先前的研究报告了FMRP目标和目的地的主要数据集
它至关重要的是,FMRP选择mRNA选择的机制尚不清楚。这缺乏确定性
关于FMRP-RNA识别原理的知识限制了对FXS和发展的理解
理性治疗方法的治疗方法。我们的初步结构数据表明FMRP可以
以序列特异性的方式结合RNA,FMRP的RNA结合并不是真正混杂的。目标
该建议的是确定人FMRP的特定RNA靶标并了解分子原理
FMRP-RNA识别。假设是FMRP的RNA结合结构域识别RNA序列 -
具体而言,这些RNA基序的组合决定了与天然RNA的结合。测试这个
假设,将使用新型的生化方法和结构研究来鉴定FMRP结合位点。
特定的目标1致力于鉴定与分离的KH结构域特异性结合的短RNA序列
通过使用新颖的“自下而上”方法将RNA捕获实验与下一个结合
生成测序。特定的目标2将表征FMRP的分子特征,这对于
通过使用生化方法和X射线晶体学结合特定的RNA结合。特定目标3将旨在
开发具有改变RNA特异性的突变体FMRP蛋白,以研究各种FMRP功能。在一起,这些
结果将定义与FMRP相互作用所需的RNA序列元素,有助于鉴定天然RNA
FMRP的靶标和设计突变体FMRP蛋白以询问动物中各种FMRP功能
FXS的模型。该提案与公共卫生和NIH任务高度相关,因为它将提供
对RNA识别和FMRP介导的翻译抑制的机制的见解,活动
与FXS,自闭症和其他疾病的发展有关。了解FMRP功能将如何
提前寻找针对FX和相关疾病的新型治疗干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Serganov其他文献
Alexander Serganov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Serganov', 18)}}的其他基金
Molecular Basis for mRNA Decay in Bacteria - summer supplement
细菌 mRNA 衰变的分子基础 - 夏季补充品
- 批准号:
10805871 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
A universal approach for determining three-dimensional RNA structures
确定三维 RNA 结构的通用方法
- 批准号:
10724848 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
Molecular Basis for mRNA Decay in Bacteria - equipment supplement
细菌中 mRNA 衰变的分子基础 - 设备补充
- 批准号:
10794537 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
RNA Targets for Fragile X Mental Retardation Protein
脆性 X 智力迟钝蛋白的 RNA 靶标
- 批准号:
9235006 - 财政年份:2016
- 资助金额:
$ 25.43万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Harnessing iron acquisition to hinder enterobacterial pathogenesis
利用铁的获取来阻碍肠细菌的发病机制
- 批准号:
10651432 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
- 批准号:
10717825 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
Examination of Ornithine Decarboxylase Antizyme RNA Structure and Function from Various Organisms for the Development of Antibiological Agents
检查不同生物体的鸟氨酸脱羧酶抗酶 RNA 结构和功能,用于开发抗生素
- 批准号:
10730595 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
Genome-wide Analysis of Anticoagulant Heparin Sulfate for Bioengineering Heparan
用于生物工程类乙酰肝素的抗凝剂硫酸肝素的全基因组分析
- 批准号:
10742641 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别: