Controlling allbB3 function by altering its energy landscape
通过改变其能量格局来控制 allbB3 功能
基本信息
- 批准号:9062482
- 负责人:
- 金额:$ 74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAdhesivesAffinityAmino AcidsAtherosclerosisAttenuatedBindingBlood PlateletsBlood VesselsCell CommunicationCell physiologyCell surfaceCellsCollagenComplexComputing MethodologiesCytoskeletal ProteinsDataDatabasesDevelopmentDivalent CationsElectron MicroscopeEndothelial CellsEquilibriumExcess MortalityExtracellular DomainFamilyFibrinFibrinogenFibrinogen ReceptorsFibrinolytic AgentsGeneticGoalsHemorrhageHemostatic AgentsHot SpotIn SituIndividualIntegrinsIntravenousLeadLigand BindingLigandsMeasuresMechanicsMediatingMembraneMembrane ProteinsModelingMolecularMolecular ConformationMyocardial InfarctionOralPathogenesisPathologicPeptidesPharmacologyPhysiologyPlatelet aggregationPlayPolymersPopulationProcessProteinsRegulationReporterRestRoleSRC geneSamplingSpectrum AnalysisStrokeStructureSurfaceSystemTalinTestingThermodynamicsThrombusTransactivationTransmembrane DomainTraumabaseclinical applicationcohesiondesignextracellularinhibitor/antagonistlaser tweezermicroscopic imagingnanomechanicsnovelpreventreceptorresearch studysmall molecule libraries
项目摘要
Project 1: Integrins are a family of ubiquitous transmembrane heterodimers that mediate fundamental processes requiring cell-matrix and cell-cell interactions and reside on cell surfaces in an equilibrium between resting inactive molecules and active ligand-binding molecules. Like other proteins, integrins are "soft" amino acid polymers that continuously sample ensembles of conformational states. Conversion from their resting to active states occurs when allosteric modulators such the divalent cation Mn[2+] or the cytoskeletal protein talin shift the distribution of conformations from one pre-existing population to another. The resting integrin conformation is enforced by non-convalent interactions involving their membraneproximal cytoplasmic, transmembrane, and juxtamembrane extracellular domains; these interactions are disrupted when an integrin shifts to its active conformation. This project is focused on the platelet integrin allbB3 , a receptor for macromolecular ligands such as fibrinogen and von Willebr and factor (VWF) following platelet stimulation. Binding of these ligands to allbp3 is responsible for platelet aggregation and is a critical step in the formation of hemostatic platelet plugs and pathologic arterial thrombi. The overall goals of the project are gain a thermodynamic understanding of allbp3 regulation and to use this understanding to develop novel allosteric modulators to attenuate allbp3 function. In Aim 1, we will generate a thermodynamic model for allbp3 activation, testing the hypothesis that topographically-distinct interactions between allb and B3 differentially regulate allbp3 activation. The relative contribution of the membrane-proximal cytoplasmic, transmembrane, and juxtamembrane extracellular domains of allb or B3 to maintaining allbB3 in its resting conformation will be quantitated using a novel AraC-based bacterial transcriptional reporter system, as well as optical tweezers-based force spectroscopy. The data will be used to derive a thermodynamic model of allbB3 activation. Chemical libraries and molecular databases will then be screened for potential allbB3 inhibitors that bind to the relevant extracellular hot spot regions of either allb or B3. In Aim 2, we will use soluble anti-transmembrane domain peptides to modify the activation state of individual allbB3 molecules in situ. By destabilizing the allbB3 heterodimer, we found that an anti-allb transmembrane domain peptide causes ligand binding-independent transactivation of B3-bound c-Src, implying that allbB3 activation alone is sufficient to cause rapid allbB3 oligomerization. Conversely, by stabilizing the allbB3 heterodimer, transmembrane-domain targeted peptides would act as novel allbB3 antagonists. Thus, we propose using computational methods to design peptides that stabilize the allbB3 TM domain heterodimer, preventing allbB3 activation and serving as lead compounds for the development of novel antithrombotic agents.
项目1:整联蛋白是一个普遍存在的跨膜异二聚体的家族,介导需要细胞 - 基质和细胞细胞相互作用的基本过程,并驻留在静息分子和活性的配体结合分子之间平衡的细胞表面上。像其他蛋白质一样,整合素也是“软”氨基酸聚合物,可连续采样构象状态的集合。当二价阳离子MN [2+]或细胞骨架蛋白塔林(Talin)将构象的分布从一个预先存在的种群转移到另一个人时,将从其静止状态转化为活性状态。静息整联蛋白构象通过涉及其膜细胞质,跨膜和叶膜外细胞外域的非共互相互作用来实现。当整联蛋白转移到其活性构象时,这些相互作用会破坏。该项目的重点是血小板整合素AllBB3,这是一种大分子配体的受体,例如纤维蛋白原和von Willebr和von Willebr和因子(VWF)。这些配体与AllBP3的结合是负责血小板聚集的,并且是形成止血血小板塞和病理动脉血栓的关键步骤。该项目的总体目标是获得对AllBP3调节的热力学理解,并利用这种理解来开发新型的变构调节剂来减轻AllBP3功能。在AIM 1中,我们将生成用于AllBP3激活的热力学模型,并测试了以下假设:ALLB和B3之间的地形差异相互作用差异地调节了AllBP3激活。膜透明质细胞质,跨膜和ALLB或B3的叶膜外域对维持AllBB3在其静止构象中维持ALLBB3的相对贡献将使用新型的基于ARAC的细菌细菌转录器系统,以及基于光学镊子的基于光学镊子。数据将用于得出AllBB3激活的热力学模型。然后将筛选化学文库和分子数据库,以筛选与ALLB或B3相关的细胞外热点区域结合的潜在ALLBB3抑制剂。在AIM 2中,我们将使用可溶性抗跨膜结构域肽来修改原位单个AllBB3分子的激活状态。通过破坏AllBB3异二聚体的稳定,我们发现抗甲基跨膜结构域肽会导致B3结合C-SRC的配体结合非依赖性反式反式激活,这意味着单独的AllBB3激活足以引起快速的ALLBB3寡聚化。相反,通过稳定AllBB3异二聚体,跨膜域靶向肽将充当新型的AllBB3拮抗剂。因此,我们建议使用计算方法设计稳定AllBB3 TM结构域异二聚体的肽,以防止AllBB3激活并用作开发新型抗强制性剂的铅化合物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel S. Bennett其他文献
Effects of Load and Contact Time on the Stability of Bimolecular Integrin-Fibrinogen Bonds Under a Constant Tensile Force
- DOI:
10.1016/j.bpj.2008.12.3113 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Rustem I. Litvinov;Joel S. Bennett;John W. Weisel;Henry Shuman - 通讯作者:
Henry Shuman
Effect of Deletion of Glycoprotein lib Exon 28 on the Expression of the Platelet Glycoprotein IIb/IIIa Complex
- DOI:
10.1182/blood.v78.9.2344.2344 - 发表时间:
1991-11-01 - 期刊:
- 影响因子:
- 作者:
Michael A. Kolodziej;Gaston Vilaire;Salahaldin Rifat;Mortimer Poncz;Joel S. Bennett - 通讯作者:
Joel S. Bennett
Disorders of platelet function: evaluation and treatment.
血小板功能障碍:评估和治疗。
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:6.1
- 作者:
Joel S. Bennett - 通讯作者:
Joel S. Bennett
Single-Molecule Force Spectroscopy of the Interactions Between Platelet Integrin αIIbβ3 and Monomeric Fibrin
- DOI:
10.1016/j.bpj.2009.12.1328 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Rustem I. Litvinov;Henry Shuman;David H. Farrell;Joel S. Bennett;John W. Weisel - 通讯作者:
John W. Weisel
Long range propagation of conformational changes in integrin α<sub>IIb</sub>β<sub>3</sub>
- DOI:
10.1016/s0021-9258(19)78180-0 - 发表时间:
1994-04-15 - 期刊:
- 影响因子:
- 作者:
Xiaoping Du;Minyi Gu;John W. Weisel;Chandrasekaran Nagaswami;Joel S. Bennett;Ron Bowditch;Mark H. Ginsberg - 通讯作者:
Mark H. Ginsberg
Joel S. Bennett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel S. Bennett', 18)}}的其他基金
Admin core for the Studies of Physiologic and Pathologic Platelet Plug Formation
生理和病理血小板栓形成研究的管理核心
- 批准号:
10656285 - 财政年份:2020
- 资助金额:
$ 74万 - 项目类别:
Admin core for the Studies of Physiologic and Pathologic Platelet Plug Formation
生理和病理血小板栓形成研究的管理核心
- 批准号:
10161820 - 财政年份:2020
- 资助金额:
$ 74万 - 项目类别:
Admin core for the Studies of Physiologic and Pathologic Platelet Plug Formation
生理和病理血小板栓形成研究的管理核心
- 批准号:
10434808 - 财政年份:2020
- 资助金额:
$ 74万 - 项目类别:
Mechanisms of normal and abnormal platelet homeostasis
正常和异常血小板稳态的机制
- 批准号:
7406856 - 财政年份:2006
- 资助金额:
$ 74万 - 项目类别:
Mechanisms of normal and abnormal platelet homeostasis
正常和异常血小板稳态的机制
- 批准号:
7808883 - 财政年份:2006
- 资助金额:
$ 74万 - 项目类别:
相似国自然基金
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
- 批准号:22302110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Identifying Mechanisms Involved in Hydroxyurea-Mediated Reduction in Vaso-occlusive Adhesive Events in Sickle Cell Disease
确定羟基脲介导的镰状细胞病血管闭塞性粘附事件减少机制
- 批准号:
10724590 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Characterization of the lens fiber cell tricellular junctional complex and its dependency on delta-catenin
晶状体纤维细胞三细胞连接复合体的表征及其对δ-连环蛋白的依赖性
- 批准号:
10738883 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Novel nanoparticles to stimulate therapeutic angiogenesis in peripheral arterial disease
刺激外周动脉疾病治疗性血管生成的新型纳米颗粒
- 批准号:
10756875 - 财政年份:2022
- 资助金额:
$ 74万 - 项目类别: