apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
基本信息
- 批准号:9305135
- 负责人:
- 金额:$ 43.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdultAffectApolipoprotein EArterial Fatty StreakArteriesAtherosclerosisAttenuatedBiologyBiomechanicsCardiovascular DiseasesCellsCholesterolCollaborationsCollagenComplementDataDevelopmentDiseaseElasticityExtracellular MatrixExtracellular Matrix ProteinsFibrillar CollagenFibronectinsGene ExpressionGenesGoalsGuanosine TriphosphateHigh Density LipoproteinsIn VitroInfiltrationIntegrinsInterruptionKnockout MiceLesionLinkLipid BindingLipoproteinsMechanicsMicrofabricationMusNon-Fibrillar CollagensPathway interactionsPlasmaProductionProtein-Lysine 6-OxidasePublicationsRecording of previous eventsReportingRho-associated kinaseRoleSignal TransductionSmooth Muscle MyocytesSystemTestingTissue ModelTissuesWorkadhesion receptorarterial stiffnesscardiovascular risk factorcell motilityexperimental studyfeedinggenome-widein vivoinhibitor/antagonistinterestmacrophagemechanical propertiesmechanotransductionmonocytemouse modelnovelpublic health relevancerecombinase-mediated cassette exchangeresponserho
项目摘要
DESCRIPTION (provided by applicant): Arterial stiffening is a risk factor for cardiovascular disease, but how arteries stay supple and how arterial stiffness contributes to disease are unknown. Our preliminary studies show that arterial elasticity is maintained by Apo lipoprotein E (apoE) and apoE-containing HDL through a suppressive effect on the expression of extracellular matrix genes. ApoE interrupts a mechanically driven feed-forward loop that increases the expression of collagen-I, fibronectin, and lysyl oxidase in response to substratum stiffening. These effects are independent of the apoE lipid-binding domain. Arterial stiffness is increased in apoE-null mice, this stiffening can be reduced by administration of the lysyl oxidase inhibitor, BAPN, and BAPN treatment attenuates atherosclerosis despite highly elevated cholesterol. Macrophage abundance in lesions is reduced by BAPN in vivo, and monocyte/macrophage adhesion is reduced by substratum softening in vitro. Mechanistically, we show that apoE and apoE-containing HDL inhibit Rho-GTP activity and reduce intracellular force in VSMCs. These changes in VSMC mechanics then affect ECM gene expression. Finally, we show that in addition to regulating (fibrillar) collagen-I, apoE and apoE-HDL inhibit the expression of collagen-VIII, a non-fibrillar collagen that has profound effects on VSMC function and atherosclerosis, yet is largely unexplored in terms of its mechanical properties and mechanistic effects. Overall, our data describe a completely new role for apoE and apoE-HDL that is independent of plasma cholesterol levels, intimately connected to cell and tissue mechanobiology, and causally linked to protection from atherosclerosis. We now propose three specific aims to characterize the relationships between apoE, intracellular force, matrix remodeling, and protection from atherosclerosis. In Aim 1, we will use a new micro fabrication platform of VSMC micro-tissues to study the effect of collagen-VIII on Rho-activity, contractility,
ECM gene expression, and tissues stiffness in 3D. We will also use this system to determine how collagen-VIII controls the mechanical response to apoE. These in vitro studies will be complemented with an ex vivo analysis of arterial stiffness in apoE+/+ and apoE-/- arteries isolated from WT and collagen-VIII deficient mice. In Aim 2, we examine the mechanism by which stiffness controls atherosclerotic lesion development, with the particular goal of identifyin mechano-sensitive adhesion receptors that account for stiffness-dependent attachment of monocytes and macrophages to sub endothelial ECM protein. As in Aim 1, complementary in vivo experiments with existing mouse models will test the effect of arterial stiffness on monocyte abundance in vivo. Aim 3 will link the results in the first two aims by developing a new mouse model that can delete RhoA from VSMCs and establish the effect of reduced intracellular force on ECM gene expression, arterial stiffness, and atherosclerosis in vivo. This work brings together a team of three PI's (Assoian, Chen and Bendeck) with complementary expertise and an established track record of co- publication who, jointly, will establish how this novel regulatin of the ECM and VSMC mechanics by apoE provides cholesterol-independent protection against cardiovascular disease.
描述(由申请人提供):动脉僵硬是心血管疾病的危险因素,但是动脉如何保持柔软以及动脉僵硬如何对疾病有效。我们的初步研究表明,通过对细胞外基质基因表达的抑制作用,Apo脂蛋白E(APOE)和含APOE的HDL维持动脉弹性。 APOE中断机械驱动的前馈环,该环响应于底层僵硬而增加了胶原蛋白I,纤连蛋白和赖氨酸氧化酶的表达。这些作用与ApoE脂质结合域无关。 Apoe-Null小鼠的动脉僵硬量增加,通过赖氨酸氧化酶抑制剂,BAPN和BAPN治疗可以降低这种僵硬,尽管胆固醇升高,但仍会减少动脉粥样硬化。 BAPN在体内减少了病变中的巨噬细胞丰度,并且通过体外底层软化减少了单核细胞/巨噬细胞粘附。从机械上讲,我们表明含APOE和含APOE的HDL会抑制Rho-GTP活性并减少VSMC中的细胞内力。然后,VSMC力学的这些变化会影响ECM基因表达。最后,我们表明,除了调节(原纤维)胶原蛋白,APOE和APOE-HDL外,还抑制了胶原蛋白VIII的表达,胶原蛋白VIII是一种非纤维胶原蛋白,对VSMC功能和动脉粥样硬化具有深远的影响,但在很大程度上对其机械性能和机械作用而言是无法解释的。总体而言,我们的数据描述了与血浆胆固醇水平无关的APOE和APOE-HDL的全新作用,该角色与细胞和组织机械生物学密切相关,并且与动脉粥样硬化的保护息息相关。现在,我们提出了三个特定的目的,以表征APOE,细胞内力,基质重塑和免受动脉粥样硬化的保护之间的关系。在AIM 1中,我们将使用一个新的微型制造平台VSMC微型组织来研究胶原蛋白VIII对Rho活性,收缩性的影响,
ECM基因表达和3D的组织刚度。我们还将使用该系统来确定胶原蛋白VIII如何控制对APOE的机械响应。这些体外研究将与从WT和胶原蛋白-VIII缺乏小鼠分离的APOE+/+和APOE - / - 动脉中的动脉刚度的离体分析相辅相成。在AIM 2中,我们研究了刚度控制动脉粥样硬化病变的发育的机制,其特定目标是识别固定机械敏感的粘附受体,这些粘附受体解释了单核细胞和巨噬细胞对子内皮ECM蛋白的僵硬依赖性附着。与AIM 1一样,与现有小鼠模型进行的互补体内实验将测试动脉刚度对体内单核细胞丰度的影响。 AIM 3将通过开发一种可以从VSMC中删除RhoA的新小鼠模型中的前两个目标中的结果,并确定减少细胞内力对ECM基因表达,动脉僵硬和体内动脉粥样硬化的影响。这项工作汇集了一个由三个PI(Assoian,Chen和Bendeck)组成的团队,并具有互补的专业知识以及合作的既定记录记录,他们将共同确定APOE的ECM和VSMC机制的这种新颖的调节蛋白如何提供胆固醇独立的保护抗心血管疾病的保护。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Curvature and Rho activation differentially control the alignment of cells and stress fibers.
- DOI:10.1126/sciadv.1700150
- 发表时间:2017-09
- 期刊:
- 影响因子:13.6
- 作者:Bade ND;Kamien RD;Assoian RK;Stebe KJ
- 通讯作者:Stebe KJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Assoian其他文献
Richard Assoian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Assoian', 18)}}的其他基金
Arterial stiffening and SMC mechanobiology in Hutchinson-Guilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症中的动脉硬化和 SMC 力学生物学
- 批准号:
10368103 - 财政年份:2019
- 资助金额:
$ 43.27万 - 项目类别:
Arterial stiffening and SMC mechanobiology in Hutchinson-Guilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症中的动脉硬化和 SMC 力学生物学
- 批准号:
10609809 - 财政年份:2019
- 资助金额:
$ 43.27万 - 项目类别:
Arterial stiffening and SMC mechanobiology in Hutchinson-Guilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症中的动脉硬化和 SMC 力学生物学
- 批准号:
9816369 - 财政年份:2019
- 资助金额:
$ 43.27万 - 项目类别:
ECM stiffness, mechanotransduction, and cell cycling
ECM 硬度、力转导和细胞循环
- 批准号:
9978116 - 财政年份:2018
- 资助金额:
$ 43.27万 - 项目类别:
ECM stiffness, mechanotransduction, and cell cycling
ECM 硬度、力转导和细胞循环
- 批准号:
10210426 - 财政年份:2018
- 资助金额:
$ 43.27万 - 项目类别:
Aging, gender and arterial stiffness in atherosclerosis
动脉粥样硬化中的衰老、性别和动脉僵硬度
- 批准号:
8668406 - 财政年份:2014
- 资助金额:
$ 43.27万 - 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
- 批准号:
8919442 - 财政年份:2014
- 资助金额:
$ 43.27万 - 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
- 批准号:
8771694 - 财政年份:2014
- 资助金额:
$ 43.27万 - 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
- 批准号:
9081644 - 财政年份:2014
- 资助金额:
$ 43.27万 - 项目类别:
Aging, gender and arterial stiffness in atherosclerosis
动脉粥样硬化中的衰老、性别和动脉僵硬度
- 批准号:
9268535 - 财政年份:2014
- 资助金额:
$ 43.27万 - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 43.27万 - 项目类别:
Role of alveolar fibroblasts in extracellular matrix organization and alveolar type 1 cell differentiation
肺泡成纤维细胞在细胞外基质组织和肺泡1型细胞分化中的作用
- 批准号:
10731854 - 财政年份:2023
- 资助金额:
$ 43.27万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 43.27万 - 项目类别:
Development and Translation of Granulated Human-Derived Biomaterials for Integrative Cartilage Repair
用于综合软骨修复的颗粒状人源生物材料的开发和转化
- 批准号:
10718170 - 财政年份:2023
- 资助金额:
$ 43.27万 - 项目类别: