Mechanisms of Prosthetic Arterial Bypass Graft Failure
人工动脉搭桥术失败的机制
基本信息
- 批准号:9235691
- 负责人:
- 金额:$ 76.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-07-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAlginatesAnastomosis - actionAnimal ModelAnti-Inflammatory AgentsAnti-inflammatoryArteriesAtherosclerosisBiocompatible MaterialsBiologicalBiologyBloodBlood VesselsBlood flowBypassCanis familiarisCardiovascular DiseasesCarotid ArteriesCell Culture TechniquesCell-Matrix JunctionCellsClinicalCoagulation ProcessCollaborationsCustomDependovirusDevelopmentDistalDrug Delivery SystemsEffectivenessEndothelial CellsEnvironmentExternal CapsuleFutureGelGene DeliveryGene ExpressionGene SilencingGene TargetingGenesGoalsHeparinHerniaHomeostasisHyaluronic AcidHyperplasiaImplantIn VitroInjuryInterventionInvadedKineticsKnowledgeLesionLongevityMARCKS geneMediatingMicroarray AnalysisModelingMolecularMolecular ProfilingMuscle CellsNanotechnologyOperating RoomsOperative Surgical ProceduresOryctolagus cuniculusPathogenesisPathogenicityPathologicPharmaceutical PreparationsPhenotypePlatelet aggregationPolyethylene TerephthalatesPolymersPositioning AttributePropertyProsthesisRGD (sequence)RNA InterferenceRecombinantsResearchRoleSeriesSiteSmooth Muscle MyocytesSurfaceSystemTNF geneTechnologyTestingTherapeuticTherapeutic AgentsThrombosisTimeTissuesTransplanted tissueUrsidae FamilyVascular GraftVascular Smooth MuscleVascular remodelingVertebral columnViral VectorVisionWorkWound Healingatheroprotectivebasebiomaterial developmentclinical translationcohesioncontrolled releasecryogeldacrondesigndrug efficacyex vivo perfusiongene therapygenetic signaturegraft failureheart circulationimplantationimprovedimproved outcomein vivoin vivo Modelinnovationknock-downlaser capture microdissectionmacrophagemonocytemultidisciplinaryoverexpressionpreventprotein expressionreconstructionrepairedresponsetherapeutic targettherapy developmentthrombospondin 2tissue repairtranslational approachuptakewound
项目摘要
This is a proposal to create a biologically active prosthetic arterial graft (PG) incorporating gene silencing and
gene overexpression in an antithrombotic and pro-angiogenic surface. The research team is unique in its
cohesiveness and breadth of expertise including nanotechnology, polymers, gene therapy, vascular biology,
and surgery, all with an established focus on vascular grafts.
This project builds on our long-standing work where we have 1) characterized the lesion of anastomotic
neointimal hyperplasia (AIH) downstream of the prosthetic graft, 2) established the role of blood flow-surface
interaction in AIH pathogenesis, 3) determined the unique gene signature associated with AIH development,
including identification of high profile pathogenic and protective targets, 4) documented delivery of siRNA from
a prosthetic surface to knockdown pathogenic genes in vascular smooth muscle cells, 5 ) documented adeno
associated virus (AAV) mediated delivery of atheroprotective genes to the vascular wall and through the
prosthetic surface to endothelial cells and, 6) demonstrated the advantages of a cryogel coating as a delivery
system for antithrombotic and pro-angiogenic molecules and gene therapy.
Based on this knowledge and achievements, we propose an optimized approach to create a highly functional
and adaptable flow surface. We will build a composite PG comprising three components: A) A `backbone' graft
composed of standard polyethyleneterephthalate (PET), B) An anti-thrombotic (heparin) gel with improved cell
attachment properties (RGD) to be applied to the graft prior to cryogelation, and C) Biologic therapeutic agents
to be incorporated in the cryogel-PG prior to surgery, which would create a high capacity multifunctional
bioactive flow surface. Using gene therapy technologies, biologics with anti-inflammatory and atheroprotective
properties that have been fully validated by our group will be incorporated to synthesize the composite PG.
Our goal is to optimize the composite PG for delivery of drugs and biologics from the flow surface into the PG
microenvironment. This would target the circulating cells invading the pseudo intima, decreasing contact
activation and platelet aggregation. Additionally, this will modulate endothelial and smooth muscle cells of the
native artery at the anastomosis site as to prevent their phenotypic switch that fuels AIH. In a rabbit model we
will implant the composite PG with the bioactive gel applied intraluminally and/or extraluminally. We will then
gauge efficacy of drug delivery, and determine its effect on PG molecular signature and AIH.
This is a stepwise study bringing to bear the necessary and broad range of expertise on the effective
application of a multifunctional bioactive prosthetic arterial graft to improve outcome. This work will also serve
as proof of concept to instill bioactivity and adapt biomaterials for therapeutic purposes such as endografts,
hernia repair, and wound coverage.
这是一项创建具有生物活性的人工动脉移植物(PG)的提案,该移植物结合了基因沉默和
基因在抗血栓和促血管生成表面过度表达。该研究团队的独特之处在于
专业知识的凝聚力和广度,包括纳米技术、聚合物、基因治疗、血管生物学、
和手术,所有这些都以血管移植为重点。
该项目建立在我们长期工作的基础上,其中我们 1) 描述了吻合口病变的特征
假体移植物下游的新内膜增生(AIH),2)建立了血流表面的作用
AIH 发病机制中的相互作用,3) 确定了与 AIH 发展相关的独特基因特征,
包括识别高调致病性和保护性靶点,4) 记录的 siRNA 递送
敲除血管平滑肌细胞中致病基因的假体表面,5)记录的腺
相关病毒(AAV)介导将动脉粥样硬化保护基因传递至血管壁并通过
内皮细胞的假体表面,6) 证明了冷冻凝胶涂层作为递送的优势
抗血栓和促血管生成分子和基因治疗系统。
基于这些知识和成就,我们提出了一种优化方法来创建功能强大的
和适应性的流动表面。我们将构建一个由三个组件组成的复合 PG: A) “主干”移植物
由标准聚对苯二甲酸乙二醇酯 (PET) 组成,B) 具有改良细胞功能的抗血栓(肝素)凝胶
在冷冻凝胶化之前应用于移植物的附着特性 (RGD),以及 C) 生物治疗剂
在手术前将其纳入冷冻凝胶-PG中,这将创造出高容量的多功能
生物活性流动表面。使用基因治疗技术,具有抗炎和动脉粥样硬化作用的生物制剂
我们小组已经充分验证的特性将被纳入合成复合 PG 中。
我们的目标是优化复合 PG,以便将药物和生物制剂从流动表面输送到 PG 中
微环境。这将针对侵入假内膜的循环细胞,减少接触
活化和血小板聚集。此外,这将调节内皮细胞和平滑肌细胞
吻合口处的天然动脉,以防止其表型转换而导致 AIH。在兔子模型中,我们
将植入具有管腔内和/或管外施加的生物活性凝胶的复合PG。我们随后将
衡量药物递送的功效,并确定其对 PG 分子特征和 AIH 的影响。
这是一项逐步的研究,为有效的研究提供了必要和广泛的专业知识。
应用多功能生物活性人工动脉移植物来改善预后。这项工作也将服务于
作为灌输生物活性和调整生物材料用于治疗目的(例如内移植物)的概念证明,
疝气修复和伤口覆盖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTIANE FERRAN其他文献
CHRISTIANE FERRAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTIANE FERRAN', 18)}}的其他基金
Harvard Longwood Short-Term Research Training in Vascular Surgery
哈佛朗伍德血管外科短期研究培训
- 批准号:
10250460 - 财政年份:2013
- 资助金额:
$ 76.81万 - 项目类别:
Vascular Remodeling in Transplant Arteriosclerosis
移植动脉硬化的血管重塑
- 批准号:
7030193 - 财政年份:2006
- 资助金额:
$ 76.81万 - 项目类别:
Vascular Remodeling in Transplant Arteriosclerosis
移植动脉硬化的血管重塑
- 批准号:
7244395 - 财政年份:2006
- 资助金额:
$ 76.81万 - 项目类别:
Vascular Remodeling in Transplant Arteriosclerosis
移植动脉硬化的血管重塑
- 批准号:
7433331 - 财政年份:2006
- 资助金额:
$ 76.81万 - 项目类别:
Vascular Remodeling in Transplant Arteriosclerosis
移植动脉硬化的血管重塑
- 批准号:
7629168 - 财政年份:2006
- 资助金额:
$ 76.81万 - 项目类别:
Improved liver function and regeneration with A20
A20 改善肝功能和再生
- 批准号:
6840549 - 财政年份:2003
- 资助金额:
$ 76.81万 - 项目类别:
Improved liver function and regeneration with A20
A20 改善肝功能和再生
- 批准号:
6693848 - 财政年份:2003
- 资助金额:
$ 76.81万 - 项目类别:
Improved liver function and regeneration with A20
A20 改善肝功能和再生
- 批准号:
7761195 - 财政年份:2003
- 资助金额:
$ 76.81万 - 项目类别:
相似国自然基金
用于肥厚型心肌病介入治疗的凝血酶-海藻酸盐复合微球消融剂制备机制及其作用机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
组织工程用氧化海藻酸盐/聚丙烯酰胺互穿网络均相凝胶的构建、结构与性能研究
- 批准号:
- 批准年份:2019
- 资助金额:41 万元
- 项目类别:地区科学基金项目
金属离子诱导海藻酸盐凝胶多尺度微观结构及外场下的演变机制
- 批准号:51803101
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于两亲性海藻酸盐的载药乳液的微观机制和多尺度模拟
- 批准号:21706045
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
两性离子聚合物/海藻酸锆互穿网络多孔凝胶球的构建及其吸附水中磷酸盐机理研究
- 批准号:51608133
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Enabling IL-2 as an Anti-inflammatory Agent through Local Dose-controlled Endoscopic Delivery
通过局部剂量控制内窥镜递送使 IL-2 成为抗炎剂
- 批准号:
10546579 - 财政年份:2022
- 资助金额:
$ 76.81万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10425405 - 财政年份:2018
- 资助金额:
$ 76.81万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10212963 - 财政年份:2018
- 资助金额:
$ 76.81万 - 项目类别:
Two Phase Approach to Pancreatic Islet Transplantation
胰岛移植的两阶段方法
- 批准号:
8596176 - 财政年份:2013
- 资助金额:
$ 76.81万 - 项目类别:
Two Phase Approach to Pancreatic Islet Transplantation
胰岛移植的两阶段方法
- 批准号:
8724206 - 财政年份:2013
- 资助金额:
$ 76.81万 - 项目类别: