Inhibitory Effect of Nitric Oxide on DNA Repair Enzymes
一氧化氮对DNA修复酶的抑制作用
基本信息
- 批准号:9232253
- 负责人:
- 金额:$ 41.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AreaBasic ScienceBindingBiochemicalBiochemical GeneticsBiologicalBiomimeticsBiophysicsBypassCell Cycle KineticsCell membraneCellsChemicalsCollaborationsComplexCore FacilityDNADNA AdductsDNA DamageDNA RepairDNA Repair EnzymesDNA Repair InhibitionDNA lesionDioxygenasesDiseaseEducationElectron Spin Resonance SpectroscopyEnvironmentEnzymesEscherichia coliFamilyGenomeGoalsHealthHumanImmune responseImpairmentIn VitroInduced MutationInflammationInflammation ProcessInstitutesIonsKineticsKnowledgeLaboratoriesLeadLesionMalignant NeoplasmsMammalian CellMassachusettsMeasuresMetalloproteinsModelingMolecularMolecular ModelsNitric OxideNucleic AcidsOligonucleotidesPathologic ProcessesPharmacologic SubstancePharmacy facilityPolymeraseProcollagen-Proline DioxygenasePropertyProtein FamilyProteinsReactionReportingResearchResearch InfrastructureRoleScienceSignaling MoleculeSiteStudentsSynthesis ChemistryTechnologyTestingTherapeuticTrainingUniversitiesWorkadductalpha ketoglutarateauthoritybasebiological systemscarcinogenesiscell injurycollegecytotoxicdesignenzyme activityexperimental studygenome integrityhistone demethylaseimprovedinhibitor/antagonistinsightinstrumentationmetal complexmolecular modelingpreventprogramsrepair enzymerepairedsmall moleculespectroscopic surveystudent mentoringtooltumorigenesisweaponsworking group
项目摘要
Abstract
Nitric oxide (NO), a signaling molecule over produced in the inflammation process, has been reported to induce
damage of cell membrane and lead to the accumulation of alkylated DNA adducts, such as 1,N6-ethenoadenine
(eA), 3,N4-ethenocytosine (eC). In this project, we will study a new aspect of nitric oxide’s cellular role in
inflammation and cancer: the inhibitory effect of NO on the AlkB family DNA repair enzymes. The AlkB proteins,
a group of Fe(II)/α-ketoglutarate-dependent dioxygenases, have been established to repair DNA alkyl lesions by
a direct reversal mechanism. Different homologs of AlkB exist in eukaryotic and prokaryotic species; nine such
homologs exist in mammalian cells (ABH1-8 and FTO). In humans, ABH2 and ABH3 have been identified as
DNA repair enzyme and constitute the most effective cellular defense against DNA adducts. In the preliminary
study, we have shown that NO has strong inhibitory effect on AlkB, ABH2 and ABH3. Electron paramagnetic
resonance (EPR) spectroscopic studies also showed NO binds to the Fe(II) ion in the catalytic center of AlkB,
thus inhibiting the catalytic O2 binding and abolishing the repair activity of AlkB. The central hypothesis of this
project is that NO delivers a “two-fold” damage to the cell by not only inducing alkyl DNA damages but also
suppressing the AlkB family DNA repair enzymes. The focus of this project is to study the relationship between
DNA repair and NO inhibition at molecular level both in vitro and in cell. We will use the three aims to
demonstrate this goal. In Aim 1, we will chemically synthesize DNA oligonucleotides containing specific
alkylated bases at defined sites, and isolate the repair enzymes. And then biochemically evaluate the repair of
alkyl-DNA lesions in vitro and determine the kinetic parameters of those repair and inhibitory reactions. In Aim
2, we will test nitric oxide’s inhibitory effect on replication efficiency and mutagenicity of DNA adducts in E. coli
cells. By using lesions placed at the exact known sites, we calculate the in cell kinetics of lesion bypass by
polymerases and lesion-induced mutation under conditions whereby the repair and inhibition capacity are
systematically varied. In Aim 3, we will characterize the NO-AlkB adduct by EPR spectroscopy and prepare
small molecule model complexes for NO-AlkB reactivity studies. The knowledge gained from those experiments
will help us understand the molecular and cellular mechanisms of NO inhibition on DNA repair and provide
insights for developing new strategy to prevent and overcome the cellular damage and tumorigenesis. Overall,
these studies will characterize a role of nitric oxide in the pathological processes of inflammation and cancer.
Once again, DNA damage is a primary initiator of many diseases and completion of the proposed studies will
have direct relevance to human health.
抽象的
据报道,一氧化氮(NO)是注射过程中产生的信号分子,据报道诱导
细胞膜的损伤并导致烷基化DNA加合物的积累,例如1,N6-乙烯二烯
(EA),3,N4-乙烯基细胞(EC)。在这个项目中,我们将研究一氧化氮在
炎症和癌症:没有对ALKB家族DNA修复酶的抑制作用。 ALKB蛋白,
已经建立了一组Fe(II)/α-酮戊二酸二加氧酶,以修复DNA烷基病变
直接逆转机制。在真核和原核物种中存在不同的ALKB同源物。九个这样
同源物存在于哺乳动物细胞(ABH1-8和FTO)中。在人类中,ABH2和ABH3被确定为
DNA修复酶,构成针对DNA加合物的最有效的细胞防御。在初步
研究,我们已经表明没有对ALKB,ABH2和ABH3具有强大的抑制作用。电子顺磁性
共振(EPR)光谱研究也表明与ALKB催化中心的Fe(II)离子没有结合,
从而抑制催化O2结合并消除ALKB的修复活性。中心假设
项目是任何不仅诱发烷基DNA损害,而且还会对细胞造成“两倍”损害
抑制ALKB家族DNA修复酶。该项目的重点是研究
DNA修复和在体外和细胞中分子水平的抑制作用。我们将使用三个目标
展示这个目标。在AIM 1中,我们将化学合成含有特定的DNA寡核苷酸
定义位点的烷基化碱,并分离修复酶。然后生化评估修复
体外烷基-DNA病变并确定这些修复和抑制反应的动力学参数。目标
2,我们将测试一氧化氮对大肠杆菌中DNA加合物的复制效率和诱变性的抑制作用
细胞。通过使用放置在确切已知部位的病变,我们计算了绕过病变的细胞动力学
在维修和抑制能力的条件下,聚合酶和病变引起的突变是
系统变化。在AIM 3中,我们将通过EPR光谱进行表征NO-ALKB加合物并准备
小分子模型的复合物用于无反应性研究。从这些实验中获得的知识
将帮助我们了解抑制DNA修复的分子和细胞机制,并提供
开发新策略以预防和克服细胞损伤和肿瘤发生的见解。全面的,
这些研究将表征一氧化氮在炎症和癌症的病理过程中的作用。
再次,DNA损伤是许多疾病的主要发起者,并且拟议研究的完成将
与人类健康有直接相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deyu Li其他文献
Deyu Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deyu Li', 18)}}的其他基金
Mapping Brain Activity with High Spatiotemporal Resolution using Graphene Probes
使用石墨烯探针以高时空分辨率绘制大脑活动图
- 批准号:
10244939 - 财政年份:2017
- 资助金额:
$ 41.1万 - 项目类别:
Exploring synaptic remodeling with graphene optoelectronic probes
用石墨烯光电探针探索突触重塑
- 批准号:
9234603 - 财政年份:2016
- 资助金额:
$ 41.1万 - 项目类别:
Exploring synaptic remodeling with graphene optoelectronic probes
用石墨烯光电探针探索突触重塑
- 批准号:
9025171 - 财政年份:2016
- 资助金额:
$ 41.1万 - 项目类别:
Imaging synapse formation using novel microfluidic platforms
使用新型微流体平台对突触形成进行成像
- 批准号:
8094187 - 财政年份:2011
- 资助金额:
$ 41.1万 - 项目类别:
Imaging synapse formation using novel microfluidic platforms
使用新型微流体平台对突触形成进行成像
- 批准号:
8306755 - 财政年份:2011
- 资助金额:
$ 41.1万 - 项目类别:
相似国自然基金
磁性功能微球在核酸快速提取及检测中的基础科学问题探究
- 批准号:52373131
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
极端高温环境流动沸腾技术的基础科学问题及关键材料研究
- 批准号:52333015
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
企业基础科学研究的动因、机制与经济效果研究
- 批准号:72302229
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
耐高温高电压SiC功率器件灌封材料的多性能协同中的基础科学问题研究
- 批准号:52272001
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Planning Study for the Development of Sigma 2 ligands as Analgesics
Sigma 2 配体镇痛药开发规划研究
- 批准号:
10641500 - 财政年份:2023
- 资助金额:
$ 41.1万 - 项目类别:
Elucidating the role of DCAF7 on hematopoietic stem cell maintenance
阐明 DCAF7 对造血干细胞维持的作用
- 批准号:
10785443 - 财政年份:2023
- 资助金额:
$ 41.1万 - 项目类别:
The cardiovascular consequences of sleep apnea plus COPD (Overlap syndrome)
睡眠呼吸暂停加慢性阻塞性肺病(重叠综合征)对心血管的影响
- 批准号:
10733384 - 财政年份:2023
- 资助金额:
$ 41.1万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 41.1万 - 项目类别:
Alcohol-induced epigenetic reprogramming of PPAR-α affects allopregnanolone biosynthesis
酒精诱导的 PPAR-α 表观遗传重编程影响异孕酮生物合成
- 批准号:
10658534 - 财政年份:2023
- 资助金额:
$ 41.1万 - 项目类别: