Synthesis of Base-Labile and Electrophilic Oligodeoxynucleotides
碱不稳定和亲电子寡脱氧核苷酸的合成
基本信息
- 批准号:9376083
- 负责人:
- 金额:$ 42.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAffinityAminationAminesAnilineAreaAziridinesBiochemistryBiologyBiomedical ResearchCarboxylic AcidsCell physiologyCellsChemicalsChemistryCleaved cellDNADNA biosynthesisDataDoctor of PhilosophyEpoxy CompoundsEstersFluoridesFoundationsFundingGenerationsGoalsHealthHydrogenationLearningLightMaleimidesMessenger RNAMetalsMethodsMolecular BiologyNucleic AcidsOrganic ChemistryOrganic SynthesisPeptidesPharmaceutical ChemistryPharmaceutical PreparationsPhenolsPlayPostdoctoral FellowProblem SolvingProceduresProcessProteinsReactionReagentReportingResearchResearch PersonnelResearch Project GrantsResearch SupportSideStructureStudentsTechniquesTechnologyTherapeutic AgentsTimeTrainingTransition ElementsUV induced DNA damageUltraviolet RaysUnited States National Institutes of HealthWorkanalogbasecareerchemical synthesiscostcovalent bonddrug developmentinterestmonomernew technologynext generationoxidationphosphoramiditeprogramsreactivation from latencysmall moleculesuccessthioesterultraviolet damageundergraduate student
项目摘要
Project summary
DNA analogs that contain latently reactive electrophilic functionalities can selectively form covalent bonds with target
biomolecules such as DNA, mRNA, and protein through affinity induced reactions. Therefore, they can be used as probes
in research areas such as chemical biology, and have the potential to become a new class of therapeutic agents that have
advantages over drugs based on small organic molecules, peptides and DNA analogs that lack such functionalities. In
addition, DNA derivatives that contain base-labile and electrophilic groups have been found in cells. They are intermediates
of important cellular processes and may play important cellular functions. To study these processes and functions, the
availability of the derivatives can be crucial for success. Consequently, chemical synthesis of base-labile and electrophilic
DNA analogs is important in health related research. Traditional DNA synthesis technologies use strongly basic and
nucleophilic reagents, which are not compatible with base-labile and electrophilic groups, are not suitable for the purpose.
A few reported methods intended to solve the problem have serious drawbacks including contamination of product by toxic
transition metal, high cost of excessively used precious metal, damage of DNA by UV light, complicated post-DNA
synthesis procedure, and narrow applications. The objective of this project is to develop a universally useful technology for
the synthesis of DNA analogs that contain a wide range of base-labile and electrophilic functionalities. To achieve the
objective, protecting groups and linkers based on the 1,3-dithian-2-yl-methoxy organic function will be employed during
DNA synthesis. With these groups and linkers, the technology does not require using any strong base, nucleophile, transition
metal, and UV light in the entire process. The technology does not need any tedious and complicated post-DNA synthesis
manipulations either. As a result, it will be practically useful for the synthesis of DNA analogs containing base-labile and
electrophilic groups. In the previous funding period, we have proven that the objective is achievable by synthesizing natural
DNA under non-nucleophilic conditions. In the next funding period, our specific aims include evaluating the scope of the
technology for the synthesis of DNA analogs that contain different electrophilic groups and further advancing the
technology to a new level so that it is more convenient to use and potentially has broader substrate scope. We will also study
the protecting groups invented in this project in the context of small molecule synthesis. Our long-term goal is to develop a
new generation of antisense drugs based on latently reactive electrophilic DNA analogs. Successful completion of this
project will build the foundation for us to achieve the goal. The PI believes that cultivating next generation biomedical
researchers is equally important as meritorious research. This project will help the PI to train one postdoc, at least one PhD
student and about seven undergraduate researchers in nucleic acid chemistry. They will learn techniques including organic
synthesis, automated DNA synthesis, and more. With this project, undergraduate students majoring in our pharmaceutical
chemistry, biochemistry & molecular biology, and other programs will have a chance to participate in NIH-supported
research, which will enhance their interest and qualification in pursuing a career in biomedical field.
项目摘要
包含潜在反应性亲电功能的DNA类似物可以选择性地形成共价键
通过亲和力诱导的反应等生物分子,例如DNA,mRNA和蛋白质。因此,它们可以用作探针
在化学生物学等研究领域,有可能成为具有新的治疗剂
基于缺乏此类功能的小有机分子,肽和DNA类似物的药物优于药物的优点。在
此外,在细胞中发现了含有碱基和亲电的DNA衍生物。他们是中间体
重要的细胞过程,并可能发挥重要的细胞功能。为了研究这些过程和功能,
衍生物的可用性对于成功至关重要。因此,碱基和亲电的化学合成
DNA类似物在健康相关研究中很重要。传统的DNA合成技术使用强大的基础和
与碱性和亲电的基团不兼容的亲核试剂不适合该目的。
旨在解决该问题的一些报告的方法具有严重的缺点,包括对产品污染的污染
过渡金属,过度使用的贵金属的高成本,紫外线损坏DNA,复杂的DNA
合成程序和狭窄的应用。该项目的目的是开发一种普遍有用的技术
DNA类似物的合成,包含多种基本和亲电的功能。实现
目的,将在1,3-DITHIAN-2-甲氧基有机功能中保护组和接头。
DNA合成。对于这些组和接头,该技术不需要使用任何强大的基础,亲核,过渡
金属和紫外线在整个过程中。该技术不需要任何乏味且复杂的DNA合成
操纵。结果,它实际上对于合成包含碱基的DNA类似物和
亲电基团。在上一个资金期间,我们已经证明,通过综合自然可以实现目标
DNA在非核粉条件下。在下一个资金期间,我们的具体目标包括评估范围
合成包含不同亲电基团的DNA类似物的技术,并进一步推进
技术达到新的水平,因此使用更方便,并且可能具有更广泛的底物范围。我们还将学习
该项目在小分子合成的背景下发明的保护组。我们的长期目标是开发
新一代的反义药物基于潜在反应性电力DNA类似物。成功完成
项目将为我们实现目标奠定基础。 PI认为培养下一代生物医学
研究人员与功绩性研究同样重要。该项目将帮助PI培训一个博士后,至少一位博士学位
学生和大约七名核酸化学研究人员。他们将学习包括有机的技术
合成,自动DNA合成等等。有了这个项目,我们的药品专业的本科生
化学,生物化学和分子生物学以及其他程序将有机会参加NIH支持的
研究将增强他们从事生物医学领域职业的兴趣和资格。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiyue Fang其他文献
Shiyue Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiyue Fang', 18)}}的其他基金
Synthesis of Sensitive Epitranscriptomically Modified RNAs
敏感表观转录组修饰 RNA 的合成
- 批准号:
10730262 - 财政年份:2014
- 资助金额:
$ 42.67万 - 项目类别:
Oligodeoxynucleotide Synthesis Using Protecting Groups and a Linker Cleavable Und
使用保护基团和可切割连接体合成寡脱氧核苷酸
- 批准号:
8626130 - 财政年份:2014
- 资助金额:
$ 42.67万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Synthetic and Biological Studies of GPI Conjugates and GPI Anchorage to Cell Membranes
GPI 缀合物和 GPI 细胞膜锚定的合成和生物学研究
- 批准号:
9902533 - 财政年份:2019
- 资助金额:
$ 42.67万 - 项目类别:
Synthetic and Biological Studies of GPI Conjugates and GPI Anchorage to Cell Membranes
GPI 缀合物和 GPI 细胞膜锚定的合成和生物学研究
- 批准号:
10371134 - 财政年份:2019
- 资助金额:
$ 42.67万 - 项目类别:
Synthetic and Biological Studies of GPI Conjugates and GPI Anchorage to Cell Membranes
GPI 缀合物和 GPI 细胞膜锚定的合成和生物学研究
- 批准号:
10584557 - 财政年份:2019
- 资助金额:
$ 42.67万 - 项目类别:
Ligand specificity in human glucose transporters GLUT1-5 and GLUT9
人葡萄糖转运蛋白 GLUT1-5 和 GLUT9 的配体特异性
- 批准号:
9290407 - 财政年份:2017
- 资助金额:
$ 42.67万 - 项目类别: