Adaptation of brain and body responses to perturbations during gait in young and older adults
年轻人和老年人的大脑和身体对步态扰动的反应的适应
基本信息
- 批准号:9219073
- 负责人:
- 金额:$ 30.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAgingAlgorithmsAnteriorAreaBrainBrain regionCharacteristicsClinicCustomDataElderlyElectroencephalographyElectromyographyElectrophysiology (science)EquilibriumFrequenciesGaitGoalsHumanImpairmentInterventionKnowledgeLateralLeftLimb structureLinkLocationLower ExtremityMeasuresMethodsMonitorMorphologic artifactsMotionMotorMovementMusclePatternPeriodicityPersonsProcessProprioceptionProtocols documentationReactionRehabilitation therapyRoboticsScalp structureSideSignal TransductionSourceSpeedStructureSystemTestingTextTimeUpdateUpper ExtremityWalkingWorkbaseearly onsetexperienceexperimental studyfallsfootgait rehabilitationimprovedindependent component analysisinnovationinsightkinematicslocomotor tasksmotor impairmentneuromuscularrelating to nervous systemresponsetooltreadmillyoung adult
项目摘要
There is a need to understand how the brain responds and adapts to losses of balance and missteps during
walking as we age. This knowledge could help improve fall interventions and advance gait rehabilitation
therapies. We propose to use electroencephalography (EEG) and independent components analysis (ICA) to
identify and quantify brain responses to perturbations during walking and recumbent stepping, a locomotor task
often used in clinics. We will test healthy young and older adults while we record their brain activity using EEG,
muscle activity using electromyography (EMG), and body kinematics using motion capture as we perturb their
stepping pattern. The perturbations will create stepping errors that will drive adaptation because people often
update movements to minimize movement errors. We will use a typical motor adaptation protocol. For Aim 1,
we will determine the electrocortical correlates of adapting to perturbations applied during rhythmic lower limb
stepping on a recumbent stepper. We will use a robotic recumbent stepper to apply brief resistive force
perturbations during specific instances in the stepping cycle. We hypothesize that A) a distributed network of
brain regions is involved and includes the anterior cingulate, a brain structure associated with error monitoring;
B) young and older adults will reduce stepping errors indicating that they adapted to the perturbations with
repeated practice, and brain processes will have larger spectral fluctuations and shift to begin prior to the
perturbation during perturbed stepping compared to unperturbed stepping; and C) older adults will use greater
muscle coactivation, adapt less well, and have smaller and delayed spectral fluctuations of brain processes
compared to young adults. For Aim 2, we will determine the electrocortical correlates of adapting to
perturbations applied during walking. We will use a treadmill that can simulate slips and trips in the
mediolateral (side-to-side) and anterior-posterior (forwards/backwards) directions to create perturbations
during specific instances in the gait cycle. To address potential movement artifact concerns that may be
created by the perturbations, we will first block the electrophysiological signals and record isolated movement
artifact using the EEG system to characterize the movement artifact in our setup and protocol. This knowledge
will help with the analysis and interpretation of the scalp EEG data and may help develop algorithms to remove
the movement artifact from EEG signals. In addition to the hypotheses in Aim 1, we have specific hypotheses
related to balance control during walking. We hypothesize that the left sensorimotor cortex will have larger
spectral fluctuations during perturbed walking compared to unperturbed walking and will be more sensitive to
mediolateral perturbations compared to anterior-posterior perturbations. The results of the proposed work will
advance our knowledge of brain function in young and older adults by determining adaptation of electrocortical
responses to perturbations during walking and a locomotor task. These findings could be applied to develop
new fall interventions and gait rehabilitation therapies based on brain dynamics.
有必要了解大脑如何反应并适应平衡和失误的损失
随着年龄的增长而行。这些知识可以帮助改善秋季干预措施并提高步态康复
疗法。我们建议使用脑电图(EEG)和独立组件分析(ICA)进行
识别并量化大脑对行走和卧式踏脚过程中对扰动的反应,这是一项运动任务
经常用于诊所。我们将在使用脑电图记录大脑活动时测试健康的年轻人和老年人,
使用肌电图(EMG)和身体运动学的肌肉活性在我们扰动时使用运动捕获
步进模式。扰动将造成阶梯错误,因为人们经常
更新动作以最大程度地减少运动错误。我们将使用典型的电机适应协议。对于目标1,
我们将确定适应节奏下肢施加的对扰动的皮质相关性
踩到卧式的步进。我们将使用机器人卧式步进措施施加短暂的电阻力
在阶梯周期中的特定实例中的扰动。我们假设a)
大脑区域涉及并包括前扣带回,这是与错误监测有关的大脑结构;
b)年轻人和老年人会减少垫脚错误,表明他们适应了与扰动的适应
重复练习,大脑过程将具有较大的光谱波动,并在开始之前开始
与不受干扰的步进相比,在干扰阶梯的过程中扰动; c)老年人将使用更大的
肌肉共激活,适应不善,脑部过程的光谱波动较小且延迟
与年轻人相比。对于AIM 2,我们将确定适应到适应的皮质相关性
步行期间施加扰动。我们将使用一个跑步机,可以模拟滑移和旅行
中外侧(左右)和前后(前向/向后)方向以产生扰动
在步态周期的特定情况下。解决可能存在的潜在移动工件关注
通过扰动创建,我们将首先阻止电生理信号并记录孤立运动
使用脑电图系统来表征我们的设置和协议中的运动伪像。这个知识
将有助于对头皮脑电图数据的分析和解释,并可能有助于开发算法以删除
脑电图信号的动作工件。除了AIM 1中的假设外,我们还有特定的假设
与步行过程中的平衡控制有关。我们假设左感觉运动皮层将具有更大的
与不受干扰的行走相比
与前后扰动相比,中外侧扰动。拟议工作的结果将
通过确定皮质的适应来提高我们对年轻人和老年人的大脑功能知识
步行过程中对扰动的响应和运动任务。这些发现可以用于发展
基于大脑动态的新秋季干预和步态康复疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen J Huang其他文献
Helen J Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helen J Huang', 18)}}的其他基金
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
老年人一体化编码的认知神经机制探索与干预研究:一种减少与老化相关的联结记忆缺陷的新途径
- 批准号:31470998
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 30.47万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 30.47万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 30.47万 - 项目类别: