Coenzyme A replenishment as a therapeutic strategy for inborn errors of metabolism
补充辅酶 A 作为先天性代谢缺陷的治疗策略
基本信息
- 批准号:9243829
- 负责人:
- 金额:$ 23.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-16 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:4&apos-phosphopantetheineAcetyl Coenzyme AAcuteAcyl Coenzyme AAdvanced DevelopmentAffectAmino AcidsAnabolismAnimal ModelAnimalsAutophagocytosisBioavailableBiochemicalBrainCarbohydratesCarnitineCell modelCell physiologyCellsChemicalsChildhoodChronicClinicalCoenzyme ADNADefectDiet ModificationDiseaseEarly DiagnosisEnergy-Generating ResourcesEstersExcretory functionFailure to ThriveFastingFatty AcidsFunctional disorderGeneticGenetic TranscriptionGlycineGoalsGrowth and Development functionHallervorden-Spatz SyndromeHealthHistologicHistone AcetylationHumanInborn Errors of MetabolismInborn Genetic DiseasesInvestigationKnowledgeLeadLong-Chain-Acyl-CoA DehydrogenaseMammalian CellMeasuresMetabolicMetabolic DiseasesMetabolismModelingMolecularMorbidity - disease rateNeonatal ScreeningNeurodegenerative DisordersNeurodevelopmental DisabilityPantothenate kinasePatientsPositioning AttributePreventionRegulationSentinelSignal TransductionStressTestingTestisTherapeuticToxic effectTranscriptional RegulationTranslatingWorkacyl groupamino acid metabolismbasechronic liver diseasecofactordietary restrictiondisease phenotypefatty acid metabolismglutaric acidemiahuman diseaseimprovedimproved outcomein vivoinnovationketotic hyperglycinemiamouse modelmutantnovel strategiesorganic acidsmall moleculesuccesstranslation to humansurinary
项目摘要
PROJECT SUMMARY
Better ways to treat genetic metabolic disorders are needed. More than 30 inborn errors of metabolism are
predicted to lead to a functional deficiency of coenzyme A (CoA), including most conditions detected by
expanded neonatal screening. Defects of fatty acid and amino acid metabolism generate high levels of organic
acids, which form intracellular acyl CoA esters and lead to the sequestration or redistribution of CoA. Two
primary inborn errors of CoA biosynthesis are now recognized, as well. Coenzyme A is critical to a diverse
range of cellular processes, including intermediary metabolism, transcriptional regulation, signal transduction,
and autophagy. Therefore deficient bioavailable CoA would disrupt myriad cellular processes and contribute to
chronic morbidity in people affected by these diseases.
Current state of treatment: The mainstay for managing this diverse group of disorders is early diagnosis,
prevention of catabolic stress, and treatment with dietary modifications that decrease precursor availability and
deliver small molecules (carnitine and glycine) to facilitate urinary excretion of toxic metabolites. While this
general approach has improved survival of the acute toxic states, few of these patients are in good health.
They suffer from a persistent abnormal metabolic state often with failure to thrive, neurodevelopmental
disabilities, dysrhythmias, chronic liver disease and other complications, problems that are predicted to arise in
part from depletion of CoA. The primary inborn errors of CoA synthesis cause lethal pediatric
neurodegenerative disorders for which there are currently no treatments.
Why is this R21 proposal innovative? Here, we propose a novel approach that will not only elucidate the
pathophysiology of selected inborn errors metabolism but will also provide a “go-no go” decision for use of a
precursor in CoA synthesis as a rational therapeutic to replenish CoA levels. Phosphopantetheine, a key
intermediate in the synthesis of CoA, was recently discovered to serve as the stable precursor for rapid CoA
synthesis. Using animal models representing four distinct CoA depletion disorders (propionic acidemia; glutaric
acidemia type 1; very long-chain acyl-CoA dehydrogenase deficiency; and pantothenate kinase-associated
neurodegeneration), we propose to 1) demonstrate that these mutant animals are more sensitive than controls
to selective CoA depletion; and 2) demonstrate the efficacy of phosphopantetheine in ameliorating disease-
associated biochemical and clinical defects. These R21 exploratory investigations have the potential to
contribute important knowledge to the understanding of these diseases and to advance development of
phosphopantetheine and its derivatives for further human studies. If successful, the work could fundamentally
change management of 30+ human diseases and significantly improve the lives of tens of thousands of people
with poor therapeutic options.
项目摘要
需要更好的治疗遗传代谢疾病的方法。超过30多个天生的代谢错误是
预计会导致辅酶A(COA)的功能缺陷,包括大多数由
扩展的新生儿筛查。脂肪酸和氨基酸代谢的缺陷会产生高水平的有机物
酸会形成细胞内酰基COA酯,并导致COA的隔离或重新分布。二
现在也认识到COA生物合成的原发性前生错误。辅酶A对潜水员至关重要
细胞过程的范围,包括中间代谢,转录调控,信号转导,
和自噬。因此,不足的生物利用COA会破坏无数的细胞过程,并有助于
受这些疾病影响的人的长期发病率。
当前的治疗状态:管理这种潜水疾病群的主要诊断是早期的诊断,
预防分解代谢压力,并通过饮食修饰进行治疗,以降低前体的可用性和
输送小分子(肉碱和甘氨酸),以促进有毒代谢物的极端尿。同时
一般方法改善了急性毒性状态的生存,这些患者中很少有身体健康。
他们经常患有持续的异常代谢状态,而神经发达
残疾,心律失常,慢性肝病和其他并发症,预计会出现的问题
一部分来自COA的耗竭。 COA合成的原发性前生错误导致致命的小儿
当前没有治疗的神经退行性疾病。
为什么这项R21提案是创新的?在这里,我们提出了一种新颖的方法,不仅会阐明
选定的先天错误代谢的病理生理学
COA合成中的前体是复制COA水平的合理疗法。磷酸耐药,钥匙
最近发现COA合成中的中间体是快速COA的稳定前体
合成。使用代表四种不同COA部署障碍的动物模型(丙酸酸血症;谷氨酸
1型酸血症;非常长链酰基-COA脱氢酶缺乏;和泛素激酶相关
神经变性),我们建议1)证明这些突变动物比对照更敏感
选择性COA部署; 2)证明磷酸乙氨酸在改善疾病的效率 -
相关的生化和临床缺陷。这些R21探索性研究有可能
为对这些疾病的理解做出重要的知识,并促进
磷酸耐药及其衍生物用于进一步的人类研究。如果成功,这项工作从根本上可以
改变30多种人类疾病的管理管理,并显着改善成千上万人的生活
治疗选择差。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN J HAYFLICK其他文献
SUSAN J HAYFLICK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN J HAYFLICK', 18)}}的其他基金
The Molecular Basis of Infantile Neuroaxonal Dystrophy
婴儿神经轴突营养不良的分子基础
- 批准号:
7105884 - 财政年份:2006
- 资助金额:
$ 23.1万 - 项目类别:
The Molecular Basis of Infantile Neuroaxonal Dystrophy
婴儿神经轴突营养不良的分子基础
- 批准号:
7348430 - 财政年份:2006
- 资助金额:
$ 23.1万 - 项目类别:
The Molecular Basis of Infantile Neuroaxonal Dystrophy
婴儿神经轴突营养不良的分子基础
- 批准号:
7231385 - 财政年份:2006
- 资助金额:
$ 23.1万 - 项目类别:
A PILOT STUDY TO DELINEATE BIOCHEMICAL PHENOTYPE AND CLINICAL OUTCOME MEASURES
描绘生化表型和临床结果指标的试点研究
- 批准号:
7206602 - 财政年份:2005
- 资助金额:
$ 23.1万 - 项目类别:
A Pilot Study to Delineate Biochemical Phenotype and Clinical Outcome Measures
描绘生化表型和临床结果指标的初步研究
- 批准号:
6981135 - 财政年份:2003
- 资助金额:
$ 23.1万 - 项目类别:
FIRST SCIENTIFIC WORKSHOP ON HALLERVORDEN-SPATZ SYNDROME
首届 Hallervorden-Spatz 综合征科学研讨会
- 批准号:
6191591 - 财政年份:2000
- 资助金额:
$ 23.1万 - 项目类别:
Molecular Basis of Syndromic Retinitis Pigmentosa
色素性视网膜炎的分子基础
- 批准号:
6727032 - 财政年份:1999
- 资助金额:
$ 23.1万 - 项目类别:
MOLECULAR BASIS OF SYNDROMIC RETINITIS PIGMENTOSA
色素性视网膜炎的分子基础
- 批准号:
6138219 - 财政年份:1999
- 资助金额:
$ 23.1万 - 项目类别:
相似国自然基金
磷酸化c-Jun/SPDEF轴在ROS1阳性肺癌靶向治疗耐药中的作用及机制研究
- 批准号:82304516
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
- 批准号:82303896
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CAFs中GPBAR1促进肝外胆管癌FGFR2磷酸化和培米替尼耐药的分子机制
- 批准号:82303324
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多组学研究STAT3调控CKMT2和CD36-FABP4影响脂肪细胞参与乳腺癌细胞磷酸肌酸合成的耐药代谢重编程
- 批准号:82360604
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
GPI介导磷酸戊糖途径的分流促进NF-κB信号通路激活--胶质瘤干细胞化疗耐药新机制?
- 批准号:82303874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A phase 2 study of a vitamin metabolite for PKAN
PKAN 维生素代谢物的 2 期研究
- 批准号:
10683049 - 财政年份:2019
- 资助金额:
$ 23.1万 - 项目类别:
Targeting cysteine import to induce ferroptotic cell death in pancreatic cancer
靶向半胱氨酸输入诱导胰腺癌铁死亡细胞
- 批准号:
10590731 - 财政年份:2017
- 资助金额:
$ 23.1万 - 项目类别:
Targeting cysteine import to induce ferroptotic cell death in pancreatic cancer
靶向半胱氨酸输入诱导胰腺癌铁死亡细胞
- 批准号:
10446758 - 财政年份:2017
- 资助金额:
$ 23.1万 - 项目类别: