Control of COPII vesicle trafficking by intracellular protein glycosylation
通过细胞内蛋白质糖基化控制 COPII 囊泡运输
基本信息
- 批准号:9384237
- 负责人:
- 金额:$ 32.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-21 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelBiochemicalBiologicalBiological AssayBiologyCRISPR/Cas technologyCapsid ProteinsCarrier ProteinsCell LineCell membraneCell physiologyCellsChemicalsChondrocytesClientCollagenCraniofacial AbnormalitiesCuesCultured CellsDataDefectDevelopmentDiseaseDysmorphologyDysplasiaEndoplasmic ReticulumEpithelial CellsExhibitsFunctional disorderGenesGoalsGolgi ApparatusGrowth FactorHumanHuman PathologyIndividualInheritedKnowledgeLightLinkLocationMammalian CellMapsMass Spectrum AnalysisMediatingMetabolicMethodsModelingMutateMutationNormal CellNormal tissue morphologyOsteogenesis ImperfectaPathologicPathway interactionsPharmacologyPhysiologicalPhysiologyPilot ProjectsPlayProtein GlycosylationProtein SortingsProteinsProteomicsRegulationRoleSet proteinSignal TransductionSiteStressSurgical suturesTestingTissuesVertebratesVesicleWorkZebrafishextracellulargenetic approachgenome editingglycoproteomicsglycosylationhuman diseaseinsightinterdisciplinary approachintracellular protein transportlive cell imagingmutantnoveloverexpressionpointed proteinprotein complexprotein protein interactionprotein transportresponseskeletalskeletogenesissugartrafficking
项目摘要
One third of all eukaryotic proteins pass through the secretory pathway for targeting to specific locations,
including the endoplasmic reticulum (ER), Golgi, plasma membrane or extracellular milieu. Since misdirected
proteins cannot function, the secretory pathway is critical for establishing and maintaining normal cell and tissue
physiology. In particular, the COPII protein complex, which mediates vesicle trafficking from the ER to the Golgi,
is a key control point for protein targeting. Moreover, mutations in COPII genes cause a range of human
diseases, including cranio-lenticulo-sutural dysplasia (CLSD) and osteogenesis imperfecta (OI). Detailed
knowledge of COPII vesicle trafficking is required to understand its role in cell physiology and to treat disorders
in which it is disrupted. However, while the core COPII machinery is well defined, little is known about how
mammalian cells regulate COPII activity in response to developmental, metabolic or pathological cues.
Recently, we and others found that several COPII proteins are modified by O-linked b-N-
acetylglucosamine (O-GlcNAc), a dynamic form of intracellular protein glycosylation. Interestingly, glycosylated
COPII components include Sec23A and Sec24D, which are mutated in CLSD and OI, respectively, manifesting
in collagen mistrafficking and skeletal dysmorphology. However, the effects of O-GlcNAcylation on the COPII
pathway remain unclear. In preliminary work, we used a chemical biology approach to show that at least four
COPII components, including Sec23 and Sec24, engage in O-GlcNAc-mediated protein-protein interactions in
human cells. In addition, we showed that pharmacological inhibition of O-GlcNAc cycling hinders COPII
trafficking. Finally, we found that an unglycosylatable mutant of Sec23A failed to rescue the collagen trafficking
and skeletogenesis defects of Sec23A-mutant crusher zebrafish. Together, these results suggest that site-
specific O-GlcNAcylation of individual COPII proteins governs vesicle trafficking in vertebrate cells and tissues.
The objective of this project is to define the mechanistic and functional effects of O-GlcNAcylation on the
COPII pathway. We will accomplish our objective through three Specific Aims. In Aim 1, we will dissect the
functional impact of O-GlcNAc cycling on COPII vesicle trafficking. In Aim 2, we will define the role of site-specific
O-GlcNAcylation of Sec23A and Sec24D in human cells. In Aim 3, we will determine the contribution of COPII
O-GlcNAcylation in vertebrate models of CLSD and OI. Our work will shed new light on how O-GlcNAcylation
tunes protein trafficking in cells and tissues, and may reveal new opportunities to treat diseases of COPII
dysfunction, such as CLSD and OI, by targeting protein glycosylation.
所有真核蛋白的三分之一通过分泌途径以靶向特定位置,
包括内质网(ER),高尔基体,质膜或细胞外环境。自误导以来
蛋白质无法发挥作用,分泌途径对于建立和维持正常细胞和组织至关重要
生理。特别是,介导从ER到高尔基体的囊泡运输的COPII蛋白复合物,
是蛋白质靶向的关键控制点。此外,COPII基因的突变引起了一系列人类
疾病,包括颅骨透明质酸核心发育不良(CLSD)和成骨的疾病(OI)。详细的
需要了解Copii囊泡运输才能了解其在细胞生理中的作用并治疗疾病
它被破坏了。但是,尽管核心COPII机械的定义很好,但对如何如何了解
哺乳动物细胞根据发育,代谢或病理提示调节COPII活性。
最近,我们和其他人发现几种COPII蛋白是通过O连接的B-N-修饰的
乙酰葡萄糖(O-GLCNAC),一种动态形式的细胞内蛋白糖基化。有趣的是,糖基化
COPII组件包括Sec23a和Sec24D,分别在CLSD和OI中突变,表现出来
在胶原蛋白失误和骨骼畸形中。但是,o-glcnacylation对copii的影响
途径仍然不清楚。在初步工作中,我们使用了一种化学生物学方法来表明至少四个
包括SEC23和SEC24在内的COPII成分,在O-GLCNAC介导的蛋白质 - 蛋白质相互作用中进行
人类细胞。此外,我们证明了O-GlCNAC循环的药理抑制作用阻碍了COPII
贩运。最后,我们发现Sec23a的不糖基突变体未能营救胶原蛋白贩运
Sec23a突变碎屑斑马鱼的骨骼生成缺陷。这些结果在一起表明站点 -
单个COPII蛋白的特异性O-Glcnacylation控制脊椎动物细胞和组织中的囊泡运输。
该项目的目的是定义O-Glcnacylation对机械和功能效应对
Copii途径。我们将通过三个具体目标来实现我们的目标。在AIM 1中,我们将剖析
O-GlCNAC循环对复印囊泡运输的功能影响。在AIM 2中,我们将定义特定地点的作用
人类细胞中SEC23A和SEC24D的O-Glcnacylation。在AIM 3中,我们将确定COPII的贡献
CLSD和OI的脊椎动物模型中的O-Glcnacylation。我们的工作将为O-Glcnacylation如何开发
调谐细胞和组织中的蛋白质运输,并可能揭示出治疗COPII疾病的新机会
功能障碍,例如CLSD和OI,通过靶向蛋白质糖基化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL S BOYCE其他文献
MICHAEL S BOYCE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL S BOYCE', 18)}}的其他基金
Metabolic regulation of KLHL proteins through O-glycosylation
通过 O-糖基化调节 KLHL 蛋白的代谢
- 批准号:
10380171 - 财政年份:2019
- 资助金额:
$ 32.58万 - 项目类别:
Control of COPII vesicle trafficking by intracellular protein glycosylation
通过细胞内蛋白质糖基化控制 COPII 囊泡运输
- 批准号:
9750747 - 财政年份:2017
- 资助金额:
$ 32.58万 - 项目类别:
Control of COPII vesicle trafficking by intracellular protein glycosylation
通过细胞内蛋白质糖基化控制 COPII 囊泡运输
- 批准号:
9975873 - 财政年份:2017
- 资助金额:
$ 32.58万 - 项目类别:
Control of COPII vesicle trafficking by intracellular protein glycosylation
通过细胞内蛋白质糖基化控制 COPII 囊泡运输
- 批准号:
10367509 - 财政年份:2017
- 资助金额:
$ 32.58万 - 项目类别:
Control of COPII vesicle trafficking by intracellular protein glycosylation
通过细胞内蛋白质糖基化控制 COPII 囊泡运输
- 批准号:
10541246 - 财政年份:2017
- 资助金额:
$ 32.58万 - 项目类别:
Cell signaling through O-GlcNAc reader proteins
通过 O-GlcNAc 读取蛋白的细胞信号传导
- 批准号:
9901557 - 财政年份:2016
- 资助金额:
$ 32.58万 - 项目类别:
Cell signaling through O-GlcNAc reader proteins
通过 O-GlcNAc 读取蛋白的细胞信号传导
- 批准号:
10656649 - 财政年份:2016
- 资助金额:
$ 32.58万 - 项目类别:
相似国自然基金
藻类微生物燃料电池CO2藻菌协同生化转化及阴极原位耦合光催化捕获
- 批准号:52306222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SPION与BMP-2磁生化信号耦合靶向新生骨精准改善成骨微环境的研究
- 批准号:82370930
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
耦合生物物理与生化地球化学过程的土地覆被变化多尺度气候效应研究
- 批准号:42371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
入核效应蛋白SidW的生化及生物学功能
- 批准号:32370196
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
力信号与生化信号协同调制免疫细胞两个关键界面过程的生物物理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 32.58万 - 项目类别:
Targeting the CCR6-CCL20 pathway for treatment of psoriatic joint and entheseal inflammation
靶向 CCR6-CCL20 通路治疗银屑病关节和附着点炎症
- 批准号:
10699251 - 财政年份:2023
- 资助金额:
$ 32.58万 - 项目类别:
Targeting Myosin to Treat Polycystic Kidney Disease
靶向肌球蛋白治疗多囊肾
- 批准号:
10699859 - 财政年份:2023
- 资助金额:
$ 32.58万 - 项目类别:
Precision Glycoengineering of an HCV Envelope-Based Nanoparticle Vaccine
HCV 包膜纳米颗粒疫苗的精密糖工程
- 批准号:
10759994 - 财政年份:2023
- 资助金额:
$ 32.58万 - 项目类别:
Signaling and metabolic functions of nSMase-2 in hepatic steatosis and onset of insulin resistance
nSMase-2 在肝脂肪变性和胰岛素抵抗发作中的信号传导和代谢功能
- 批准号:
10735117 - 财政年份:2023
- 资助金额:
$ 32.58万 - 项目类别: