Automated detection and prediction of atrial fibrillation during sepsis
脓毒症期间心房颤动的自动检测和预测
基本信息
- 批准号:9283910
- 负责人:
- 金额:$ 54.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmic AnalysisAlgorithmsAmericanAntibioticsArrhythmiaAtrial FibrillationBig DataCardiacCardiac Surgery proceduresCardiovascular systemCessation of lifeCharacteristicsClinicalClinical ResearchClinical TreatmentComorbidityComplicationComputer AssistedCritical IllnessDataDatabasesDetectionDevelopmentEarly DiagnosisElectrolytesElectromagneticsElectronic Health RecordEvidence based treatmentFunctional disorderFutureGoldGrantHeart AbnormalitiesHeart AtriumHeart RateHeart failureHospitalizationHospitalsHourInfectionIntensive CareInterventionInvestigationKnowledgeLaboratoriesLifeLinkLiquid substanceMachine LearningManualsMethodsModelingMonitorMorbidity - disease rateMorphologic artifactsMotionMyocardial dysfunctionNoiseOrganOutcomePatient riskPatient-Focused OutcomesPatientsPhysiologic pulsePreventionPreventive therapyQuality of lifeResearchResourcesResuscitationRiskRisk FactorsSepsisShockStrokeStroke VolumeSubgroupTechnologyTelemetryTimeUnited StatesUnited States National Institutes of HealthVariantbaseclinical predictorselectronic dataheart rhythmhemodynamicshigh riskimprovedimproved outcomeinnovationlearning strategymortalitynovelportabilitypredictive signaturepreventresponseseptictherapeutic targettime usetooltreatment strategy
项目摘要
7. ABSTRACT / PROJECT SUMMARY
We propose the “Automated detection and prediction of atrial fibrillation during sepsis” study to develop
automated technologies capable of accurate atrial fibrillation (AF) detection and prediction during sepsis.
Sepsis is a life-threatening, dysregulated response to infection and the most common illness leading to
hospitalization in the United States, affecting ~1 million Americans yearly, and is associated with 50% of all
hospital deaths. With the exception early antibiotic and fluid use, few therapies improve outcomes among
septic patients; new treatment strategies are greatly needed to improve survival. New-onset AF is a common
dysrhythmia among critically ill patients with sepsis, affecting up to 1 in 3 septic patients and conferring
increased short- and long-term risks stroke, heart failure, and death. Prevention of AF or its complications may
improve sepsis outcomes by reducing AF-related morbidity and mortality. Although several evidence-based
treatments have shown efficacy in treating and preventing AF in certain high-risk subgroups (e.g., AF
prevention following cardiac surgery), studying application of these therapies among critically ill patients with
sepsis has been hampered by two major factors: 1) we lack validated automated mechanisms to detect AF and
facilitate real-world AF research in large clinical databases, and 2) we cannot presently predict which patients
with sepsis will develop AF. Our project will leverage the unique resources of the recently released
Multiparameter Intelligent Monitoring in Intensive Care (MIMIC III) database. MIMIC III links continuous ECG
and pulse plethysmographic waveforms to a wealth of time-varying clinical and hemodynamic data. Our project
will develop and validate state-of-the art automated AF detection algorithms using waveform data from critically
ill patients. Automated AF detection would enable expedited clinical treatment of AF, identification of subclinical
AF, and will catalyze the study of AF in emerging electronic health record waveform databases. We will
develop innovative automated AF prediction capabilities using state-of-the-art waveform analysis algorithms
and machine learning methods in critically ill patients. Automated algorithms that identify patients at high risk
for developing AF in the near-term would enable targeting of preventative therapies and potentially usher in a
new era of AF prevention for critically ill patients. AF prevention and treatment facilitated through our project
will allow targeting of novel, AF-based mechanisms of poor outcomes during and following sepsis.
7。摘要 /项目摘要
我们提出了“败血症期间心房颤动的自动检测和预测”研究
能够在败血症期间能够准确的心房颤动(AF)检测和预测的自动化技术。
败血症是一种威胁生命的,对感染的反应失调,是最常见的疾病,导致
在美国的住院,每年影响约100万美国人,与所有人的50%有关
医院死亡。除早期抗生素和液体使用外,很少有疗法改善预后
化粪池患者;非常需要新的治疗策略来改善生存。新的AF是常见的
患有败血症的重症患者中的心律失常,影响三分之一的化粪池患者和会议
短期和长期风险中风,心力衰竭和死亡增加。预防AF或其并发症可能
通过降低与AF相关的发病率和死亡率来改善败血症的结果。虽然有几个循证
治疗表明在某些高风险亚组中治疗和预防AF的效率(例如AF
心脏手术后的预防),研究这些疗法在重症患者中的应用
败血症受到两个主要因素的阻碍:1)我们缺乏检测AF和的自动化机制
在大型临床数据库中促进现实世界中的AF研究,2)我们目前无法预测哪些患者
随着败血症的发展,会发展自动对抗。我们的项目将利用最近发布的独特资源
重症监护(MIMIC III)数据库中的多参数智能监测。模拟III链接连续ECG
脉搏图波形具有大量时变临床和血液动力学数据。我们的项目
将使用批判性的波形数据开发和验证最先进的自动化AF检测算法
IL患者。自动化AF检测将使AF的快速临床治疗,鉴定亚临床
AF,并将催化在新兴的电子健康记录波形数据库中对AF的研究。我们将
使用最先进的波形分析算法开发创新的自动化预测功能
和重病患者的机器学习方法。自动化算法识别高风险的患者
对于在短期内开发AF将有助于预防疗法,并可能引入
预防AF的新时代针对重症患者。通过我们的项目准备的预防和治疗
将允许针对败血症期间和之后的新型,基于AF的新型机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allan J. Walkey其他文献
Guideline : Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome
指南:成人急性呼吸窘迫综合征患者的机械通气
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
E. Fan;L. Sorbo;E. Goligher;C. Hodgson;L. Munshi;Allan J. Walkey;N. Adhikari;M. Amato;R. Branson;R. Brower;N. Ferguson;O. Gajic;L. Gattinoni;D. Hess;J. Mancebo;M. Meade;D. McAuley;A. Pesenti;V. Ranieri;G. Rubenfeld;E. Rubin;Maureen A. Seckel;Arthur S Slutsky;D. Talmor;B. Thompson;H. Wunsch;E. Uleryk;J. Brożek;L. Brochard - 通讯作者:
L. Brochard
Modeling the effects of stretch-dependent surfactant secretion on lung recruitment during variable ventilation
模拟可变通气期间拉伸依赖性表面活性剂分泌对肺复张的影响
- DOI:
10.4236/jbise.2013.612a008 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
S. Amin;A. Majumdar;Philip E Alkana;Allan J. Walkey;G. O'Connor;B. Suki - 通讯作者:
B. Suki
Formulating the Research Question
制定研究问题
- DOI:
10.1007/978-3-319-43742-2_9 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
A. Mehta;B. Malley;Allan J. Walkey - 通讯作者:
Allan J. Walkey
Differential response to intravenous prostacyclin analog therapy in patients with pulmonary arterial hypertension
- DOI:
10.1016/j.pupt.2011.01.002 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:
- 作者:
Allan J. Walkey;Daniel Fein;Kevin J. Horbowicz;Harrison W. Farber - 通讯作者:
Harrison W. Farber
Mechanical Ventilation in Adults with Acute Respiratory Distress Syndrome An Official Clinical Guideline of American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine
成人急性呼吸窘迫综合征的机械通气 美国胸科学会/欧洲重症监护医学会/重症监护医学会官方临床指南
- DOI:
10.18093/0869-0189-2018-28-4-399-410 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
E. Fan;L. Sorbo;E. Goligher;C. Hodgson;L. Munshi;Allan J. Walkey;N. Adhikari;M. Amato;R. Branson;R. Brower;N. Ferguson;O. Gajic;L. Gattinoni;D. Hess;J. Mancebo;M. Meade;D. McAuley;A. Pesenti;V. Ranieri;G. Rubenfeld;E. Rubin;Maureen A. Seckel;Arthur S Slutsky;D. Talmor;B. Thompson;H. Wunsch;E. Uleryk;J. Brożek;L. Brochard - 通讯作者:
L. Brochard
Allan J. Walkey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allan J. Walkey', 18)}}的其他基金
Informing best practices for evaluation and treatment of myocardial injury during sepsis
为脓毒症期间心肌损伤的评估和治疗提供最佳实践
- 批准号:
10973324 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Targeting cardiovascular events to improve patient outcomes after sepsis
针对心血管事件以改善脓毒症后患者的预后
- 批准号:
9923730 - 财政年份:2018
- 资助金额:
$ 54.45万 - 项目类别:
Targeting cardiovascular events to improve patient outcomes after sepsis
针对心血管事件以改善脓毒症后患者的预后
- 批准号:
10219343 - 财政年份:2018
- 资助金额:
$ 54.45万 - 项目类别:
Automated detection and prediction of atrial fibrillation during sepsis
脓毒症期间心房颤动的自动检测和预测
- 批准号:
9910440 - 财政年份:2017
- 资助金额:
$ 54.45万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
9002852 - 财政年份:2013
- 资助金额:
$ 54.45万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
8617298 - 财政年份:2013
- 资助金额:
$ 54.45万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
8425628 - 财政年份:2013
- 资助金额:
$ 54.45万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
8791133 - 财政年份:2013
- 资助金额:
$ 54.45万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
9205255 - 财政年份:2013
- 资助金额:
$ 54.45万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多用户多模式的社交影响力传播模型与算法研究
- 批准号:62102357
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
定点突变对酶功能影响的分析算法研究
- 批准号:61379081
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
高精度磁悬浮陀螺全站仪环境影响分析及优效算法研究
- 批准号:41074006
- 批准年份:2010
- 资助金额:45.0 万元
- 项目类别:面上项目
非线性极化和范德华力对太赫兹吸收谱的影响及电介质样品定量分析算法的修正
- 批准号:60977065
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
- 批准号:
10751952 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别: