Using Integrative Networks to Explore Heterogeneous Phenotypes in COPD

使用综合网络探索 COPD 的异质表型

基本信息

  • 批准号:
    9320981
  • 负责人:
  • 金额:
    $ 18.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Rapidly evolving genomic technologies are providing unprecedented amounts of data with the potential to yield new insights into the processes driving lung disease, including Chronic Obstructive Pulmonary Disease (COPD). These data have already allowed us to develop a more unified understanding of how multiple biological mechanisms work together to influence COPD. We now appreciate that in most cases a single gene or pathway does not fully characterize the disease or alterations in disease-state. Rather, disease-related changes often involve simultaneous alterations to the genome, epigenome, transcriptome, metabolome, and proteome of the cell and can be represented by complex networks whose structures are altered as the disease develops. Importantly, many of these changes are associated with complex shifts in the regulatory networks from the normal to a diseased state. Modeling these changes can inform us about the processes that drive COPD and suggest potential targeted therapies. In this proposal we develop and expand methods for integrating emerging multi-omic data to reconstruct comprehensive regulatory networks in COPD. We then develop approaches for analyzing these networks and for effectively linking regulatory alterations with disease mechanisms within different observed COPD phenotypes. We begin by developing quantitative approaches for inferring, analyzing, decomposing and comparing networks. These methods will allow us to discover new features about the nature of lung disease, to understand the complex regulatory processes at work across patients, and ultimately have the power suggest ways to more effectively treat COPD. Executing on this plan will require a unique set of skills that span biology, network science, computer science, translational medicine and lung disease. Dr. Glass’ background is in physics, complex systems and genomic data analysis. Although her previous experiences have prepared her well for the proposed research, she recognizes that there are new challenges that need to be overcome when applying networks and genomics approaches to study COPD. Therefore, Dr. Glass has selected a mentored research environment and crafted a training program that will allow her to obtain the interdisciplinary skills necessary to accomplish the goals of this project. In support of her proposed research, Dr. Glass will make use of the many high-quality computational resources available to her through the Channing Division of Network Medicine (CDNM) at Brigham and Women’s Hospital (BWH), the Dana-Farber/Harvard Cancer Center, Harvard Medical School, and the Harvard School of Public Health and well as additional resources directly provided by her mentors and advisory board members. Along these lines, Dr. Glass has assembled a diverse and well-qualified mentoring team to oversee and advise her research efforts. Her primary mentor, Dr. Quackenbush, and advisory board member Dr. Yuan both have extensive and complementary experience in analyzing and interpreting many types of genomic data. Advisory board member Dr. Kepner has deep knowledge of scalable computer architecture and will support Dr. Glass by providing computational resources such as access to the MIT SuperCloud. After constructing regulatory networks in COPD, interpreting them in the context of relevant biological questions will be essential. Advisory board member Dr. Onnela is an expert in developing methods for network quantification and will play an important role in helping Dr. Glass to create objective measures of network structural differences. Finally, co-mentor Dr. Silverman is a leading expert in COPD and network medicine, and will provide important guidance to Dr. Glass as she determines how to relate network measures to patient data, including relevant clinical features of COPD. Dr. Glass will supplement her hands-on training with formal coursework and specific mentored exploration focused in three main areas: 1) Lung disease, translational medicine and clinical applications, with training through courses offered through the Harvard Catalyst and Harvard School of Public Health, attending the annual American Thoracic Society meeting, and working closely with Dr. Silverman and the Respiratory Medicine faculty at the CDNM/BWH; 2) Biomedical data analysis and computation, with training from taking online classes offered by the University of Washington and Massachusetts Institute of Technology, attending local workshops and working closely with Drs. Quackenbush, Yuan and Kepner; and 3) Statistics and network analysis methods development, with training from taking courses offered by the Harvard School of Public Health, attending national conferences, and working closely with Drs. Quackenbush and Onnela. Finally, Dr. Glass will actively participate in and receive training on the grant writing process throughout the award period, so as to be well-prepared to apply for independent funding at the conclusion of the project. Dr. Glass’s career goal is to become an independent investigator studying non-neoplastic lung disease at an academic institution. Through the proposed research and training plan, she will be able to hone the computational abilities she has already developed and collect a variety of additional skills that will be essential to becoming an independent investigator capable of leveraging biomedical data to perform computational research and network analysis that has translational applications in COPD and lung disease.
项目摘要/摘要 快速进化的基因组技术正在提供前所未有的数据,有可能 对驱动肺部疾病的过程产生新的见解,包括慢性阻塞性肺部疾病 (COPD)。 生物机制共同影响COPD。 或途径并不能完全表征疾病状态的疾病或疾病与疾病有关的变化 变化通常涉及对基因组,表观基因组,转录组,代谢组和以及 细胞的蛋白质组,可以由复杂网络代表,其结构被改变为疾病 开发。 从正常状态到患病状态。 COPD并建议潜在的靶向疗法。 在此提案中,我们开发和扩展了整合新兴的多族数据以重建的方法 COPD中的全面监管网络。 有效地将调节性改变与不同观察到的COPDD中的疾病机制联系起来 表型,我们首先开发用于推断,分析,分解和 比较网络。 了解患者工作中复杂的规则性过程,并具有最终的力量 更有效地治疗COPD的方法。 使用该计划执行该计划,需要一套独特的技能棕褐色生物学,网络科学,计算机 科学,转化医学和肺部病。 基因组数据分析。 她认识到,应用网络时需要克服的新挑战和 基因组学的方法是研究COPD。 并制定了一个培训计划,以获得完成所需的跨学科技能 该项目的目标。 为了支持她的支撑研究,格拉斯博士将利用许多高质量的计算机性 她通过Brigham的Channing Network Medicine(CDNM)和 妇女医院(BWH),达娜·弗勒伯/哈佛癌症中心,哈佛医学院和哈佛大学 她的导师和顾问委员会直接提供的健康学校和Asditional资源 成员。 并建议她的研究主管Quackenbush博士和顾问委员会成员Yuan博士 两者都有广泛和互补的经验,并解释了许多类型的基因组数据。 顾问委员会成员Kepner博士对可扩展计算机有深刻的了解,并将支持博士。 通过提供计算资源,例如访问MIT超级云 COPD中的监管网络在相关生物学问题的背景下解释它们至关重要。 顾问委员会成员Onnela博士是开发网络量化方法的专家,并将发挥作用 最终,帮助格拉斯博士建立网络结构差异的重要作用。 Co-Mentor Silverman博士是COPD和网络医学领域的领先专家,将提供重要的 她确定如何将网络措施与患者数据联系起来的指导,包括有关患者的数据 COPD的临床特征。 格拉斯博士将通过正式的课程和特定的指导探索来补充她的动手培训 专注于三个主要领域:1)肺部疾病,转化医学和临床应用,并进行培训 通过课程提供了哈佛大学催化剂和哈佛公共卫生学院 年度美国胸腔协会会议,并与Silverman博士和呼吸道紧密合作 CDNM/BWH的医学教师; 2)生物医学数据分析和计算 华盛顿大学和马萨诸塞州理工学院提供的在线课程 当地的讲习班,与Quackenbush,Yuan和Kepner近距离合作; 分析方法开发,从哈佛大学公立学院提供的课程进行的培训 健康,参加全国会议,并与Quackenbush和Onnela密切合作。 格拉斯将在整个奖励期内积极参与IND接受授予过程的培训, 为了在项目结束时申请独立资金。 格拉斯博士的职业目标是成为研究肿瘤肺肺疾病的独立独立知识者 通过拟议的研究和培训计划 她使Allyady脱离了计算能力,并收集了各种其他技能 为了维持一个能够利用生物医学数据执行计算的独立研究者 研究和网络分析在COPD和肺部疾病中具有转化应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kimberly Renee Glass其他文献

Kimberly Renee Glass的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kimberly Renee Glass', 18)}}的其他基金

Leveraging Variant-perturbed Gene Regulation to Support Precision Medicine in COPD
利用变异扰动的基因调控支持慢性阻塞性肺病的精准医疗
  • 批准号:
    10365114
  • 财政年份:
    2022
  • 资助金额:
    $ 18.9万
  • 项目类别:
Leveraging Variant-perturbed Gene Regulation to Support Precision Medicine in COPD
利用变异扰动的基因调控支持慢性阻塞性肺病的精准医疗
  • 批准号:
    10583539
  • 财政年份:
    2022
  • 资助金额:
    $ 18.9万
  • 项目类别:
Using Integrative Networks to Explore Heterogeneous Phenotypes in COPD
使用综合网络探索 COPD 的异质表型
  • 批准号:
    9164450
  • 财政年份:
    2016
  • 资助金额:
    $ 18.9万
  • 项目类别:

相似国自然基金

开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
  • 批准号:
    42301183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
  • 批准号:
    72349001
  • 批准年份:
    2023
  • 资助金额:
    200 万元
  • 项目类别:
    专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
  • 批准号:
    72364037
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
政府数据开放与资本跨区域流动:影响机理与经济后果
  • 批准号:
    72302091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Uncovering sleep and circadian mechanisms contributing to adverse metabolic health
揭示导致不良代谢健康的睡眠和昼夜节律机制
  • 批准号:
    10714191
  • 财政年份:
    2023
  • 资助金额:
    $ 18.9万
  • 项目类别:
Improving our understanding of breast cancer mortality disparities through recurrence: a multi-level approach among women in Georgia
通过复发提高我们对乳腺癌死亡率差异的理解:格鲁吉亚妇女的多层次方法
  • 批准号:
    10818726
  • 财政年份:
    2023
  • 资助金额:
    $ 18.9万
  • 项目类别:
Genomic and environmental drivers of HCC in Non-Hispanic Blacks: Nature and nurture
非西班牙裔黑人 HCC 的基因组和环境驱动因素:先天和后天
  • 批准号:
    10856546
  • 财政年份:
    2023
  • 资助金额:
    $ 18.9万
  • 项目类别:
Research and Methods Core-002
研究和方法 Core-002
  • 批准号:
    10660382
  • 财政年份:
    2023
  • 资助金额:
    $ 18.9万
  • 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
  • 批准号:
    10570666
  • 财政年份:
    2023
  • 资助金额:
    $ 18.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了