The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and the therapeutic potential of antioxidants

氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力

基本信息

  • 批准号:
    9088993
  • 负责人:
  • 金额:
    $ 13.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-14 至 2016-09-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Reticular Dysgenesis (RD) is one of the most serious forms of severe combined immunodeficiency (SCID) because it affects both innate and adaptive immunity. The disease is characterized by arrested neutrophil maturation, profound lymphopenia, and sensorineural hearing loss. It is invariably fatal early in life unless immune reconstitution is achieved by hematopoietic stem cell transplantation (HSCT). The simultaneous occurrence of severe neutropenia and lymphopenia is responsible for a high risk of death in infancy, and the predominance of bacterial and fungal infections supports neutropenia as the prevailing cause of death. RD is caused by mutations in the mitochondrial enzyme Adenylate Kinase 2 (AK2), however, how AK2 defects translate into disease pathology is largely unknown. Overall, transplant outcomes in RD are significantly worse compared to any other form of SCID, suggesting that the nature of the genetic defect may directly impact the poor prognosis. Therefore, elucidating the mechanistic basis of RD is critical in order to target the underlying problem and develop additional therapeutic options. Our prior work in induced pluripotent stem cell and zebrafish models of RD has shown that hematopoietic stem and progenitor cell differentiation is compromised but can be rescued by treatment with antioxidant agents (Rissone, Weinacht et al., J Exp Med, 2015, in press). These data led to the hypothesis that AK2 defects impair mitochondrial metabolism and increase oxidative stress, and that antioxidant agents improve mitochondrial function and represent a targeted supportive therapy to treat the neutropenia and overall constitution of patients with RD. To test this hypothesis I will dissect th molecular mechanisms underlying RD and their responsiveness to antioxidants by defining mitochondrial metabolism, oxidative stress and antioxidant reserve in different iPSC-models of RD before and after treatment with antioxidants. To demonstrate that the in vitro findings can be translated to patients, I will develop a xenograft model of RD based on transplantation of AK2-deficient iPSC-derived respecified multipotent hematopoietic progenitors into NSG-mice, and examine how antioxidant treatment affects engraftment, differentiation potential and mitochondrial function. If my preliminary findings that antioxidants improve mitochondrial function are supported by the proposed research, the therapeutic potential of these agents could be exploited in a much wider range of diseases, in which mitochondrial pathology and oxidative stress are at play. I am a pediatric hematologist with focus on immune and immune-mediated diseases and substantial prior research experience in molecular microbiology, stem cell differentiation and reprogramming, who is seeking K08 support for mentored research under the guidance of Dr. Luigi Notarangelo, Division of Immunology, Boston Children's Hospital, with Dr. George Daley, Division of Hematology/Oncology, Boston Children's Hospital/Dana-Farber Cancer Institute, as co-mentor. My long-term career objective is to obtain a tenure-track position as a physician-scientist at an academic center with special commitment to the study, diagnosis and treatment of primary immunodeficiencies. The K08 award will provide the protected time I need to advance my training in stem cell biology, metabolism, xenografting, in situ gene editing and translational research. I will devote a minimum of 80% of my time to a focused research project investigating the molecular mechanisms underlying RD and its responsiveness to antioxidants, and will complement this with 20% of my effort dedicated to clinical care of children with hematologic diseases. Boston Children's Hospital, Dana-Farber Cancer Institute and Harvard University are internationally recognized research institutions with renowned expert researchers in the areas of stem cell biology, hematopoiesis, metabolism, in situ gene editing, and development of xenograft-models. Furthermore, the Divisions of Pediatric Hematology/Oncology and Immunology have a distinguished record of training successful physician-scientists. I have assembled a mentoring and advisory committee, consisting of Drs. Raif Geha, David Williams, Alan Beggs, and Suneet Agarwal, who will guide my research and training experience. The expertise of my advisory committee will be complemented by a set of additional collaborators who are experts in their respective fields (Dr. Kiran Musunuru, gene editing with CRISPR/Cas9; Dr. Marcia Haigis, mitochondrial biology; and Dr. Giancarlo la Marca, Tandem Mass Spectrometry). This research proposal is part of a structured plan with scientific, technical, clinical training and career development components. The career development plan builds upon my prior research and clinical experiences with the goal of ensuring that I acquire the expertise required to become a successful, independent investigator whose focus is on translating disease mechanisms underlying immunodeficiencies into targeted therapies for patients.
 描述(由适用提供):网状失调(RD)是严重的合并免疫缺陷(SCID)最严重的形式之一,因为它影响了先天性和适应性免疫组织化学。该疾病的特征是中性粒细胞成熟,深层淋巴细胞减少和感觉性听力损失。除非通过造血干细胞移植(HSCT)实现免疫事件,否则这总是致命的。严重中和和淋巴细胞减少症的简单发生是导致婴儿期死亡的高风险,细菌和真菌感染的占主导地位支持中和,这是死亡的主要原因。 RD是由线粒体酶腺苷酸激酶2(AK2)突变引起的,但是,AK2缺陷如何转化为疾病病理学是未知的。总体而言,与任何其他形式的SCID相比,RD中的移植结局明显较差,这表明遗传缺陷的性质可能直接影响预后不良。因此,阐明RD的机械基础对于针对潜在问题并开发其他治疗选择至关重要。我们先前在诱导多能干细胞和RD的斑马鱼模型中的工作表明,造血干和祖细胞分化受到损害,但可以通过用抗氧化剂治疗(Rissone,Weinacht等,Weinacht等,J Exp Med,2015年)来挽救。这些数据导致了以下假设:AK2缺陷会损害线粒体代谢并增加氧化应激,并且抗氧化剂改善了线粒体功能,并代表了治疗RD患者中性和整体构型的有针对性的支持疗法。为了检验该假设,我将通过在不同的IPSC模型中定义线粒体代谢,氧化应激和抗氧化剂储备在用抗氧化剂治疗前后的IPSC模型中,通过定义线粒体代谢,氧化应激和抗氧化剂储备来剖析其对抗氧化剂的反应性。为了证明可以将体外发现转化为患者,我将基于AK2-dific IPSC衍生的重新指定的多能造血祖细胞的移植来开发RD的Xenographic模型,并研究了抗氧化剂治疗如何影响抗氧化剂治疗,如何影响植入,分化潜在和分化潜力和线粒体功能。我的初步发现,拟议的研究支持了抗氧化剂改善线粒体功能,这些药物的治疗潜力可以在更广泛的疾病中探索,线粒体病理学和氧化应激在这种疾病中正在发挥作用。 I am a pediatric hematologist with focus on immune and immune-mediated diseases and substantial prior research experience in molecular microbiology, stem cell differentiation and reprogramming, who is seeking K08 supported for mentored research under the guidance of Dr. Luigi Notarangelo, Division of Immunology, Boston Children's Hospital, with Dr. George Daley, Division of Hematology/Oncology, Boston Children's医院/达纳 - 法伯癌研究所(Dana-Farber Cancer Institute)担任联合学者。我的长期职业目标是在学术中心获得终身任职的职位,对研究,诊断和K08奖的特殊承诺将提供我需要的受保护的时间,以提高我在干细胞生物学,代谢,Xenografting,Xenografting,xenografting和tos tenu edee edee编辑和翻译研究中的培训。我将至少将80%的时间投入到一个重点的研究项目上,该项目研究了RD的分子机制及其对抗氧化剂的反应性,并将以我20%的精力致力于儿童的临床护理来完成此工作。 血液学疾病。波士顿儿童医院,达纳 - 法伯癌症研究所和哈佛大学是国际公认的研究机构,在干细胞生物学,造血,代谢,原位基因编辑以及异种移植模型的发展方面,具有著名的专家研究人员。此外,小儿血液学/肿瘤学和免疫学的分裂具有培训成功的医师科学家的杰出记录。我组建了一个由Drs组成的心理和咨询委员会。 Raif Geha,David Williams,Alan Beggs和Suneet Agarwal,他们将指导我的研究和培训经验。我的咨询委员会的专业知识将由一组其他合作者完成,这些合作者是各自领域的专家(Kiran Musunuru博士,与CRISPR/CAS9的Gene编辑; Marcia Haigis博士,Mitochondrial Biology; Mitochrial Biology; Giancarlo La Marca博士,Tandem Massepsmetry)。该研究建议是具有科学,技术,临床培训和职业发展组成部分的结构化计划的一部分。职业发展计划以我先前的研究和临床经验为基础,目的是确保我获得成为成功的独立研究人员所需的专业知识,他们的重点是翻译疾病机制。对患者的靶向疗法的免疫缺陷。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katja Gabriele Weinacht其他文献

Katja Gabriele Weinacht的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katja Gabriele Weinacht', 18)}}的其他基金

Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
  • 批准号:
    10906528
  • 财政年份:
    2023
  • 资助金额:
    $ 13.49万
  • 项目类别:
Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
  • 批准号:
    10446518
  • 财政年份:
    2022
  • 资助金额:
    $ 13.49万
  • 项目类别:
Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
  • 批准号:
    10583534
  • 财政年份:
    2022
  • 资助金额:
    $ 13.49万
  • 项目类别:
The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and thetherapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
  • 批准号:
    9317208
  • 财政年份:
    2016
  • 资助金额:
    $ 13.49万
  • 项目类别:
The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and thetherapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
  • 批准号:
    9889872
  • 财政年份:
    2016
  • 资助金额:
    $ 13.49万
  • 项目类别:
The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and thetherapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
  • 批准号:
    9262144
  • 财政年份:
    2016
  • 资助金额:
    $ 13.49万
  • 项目类别:

相似海外基金

The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and thetherapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
  • 批准号:
    9317208
  • 财政年份:
    2016
  • 资助金额:
    $ 13.49万
  • 项目类别:
The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and thetherapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
  • 批准号:
    9889872
  • 财政年份:
    2016
  • 资助金额:
    $ 13.49万
  • 项目类别:
The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and thetherapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
  • 批准号:
    9262144
  • 财政年份:
    2016
  • 资助金额:
    $ 13.49万
  • 项目类别:
Insulin Clearance: Candidate and Positional Genetic Determinants
胰岛素清除率:候选和位置遗传决定因素
  • 批准号:
    8197862
  • 财政年份:
    2008
  • 资助金额:
    $ 13.49万
  • 项目类别:
Insulin Clearance: Candidate and Positional Genetic Determinants
胰岛素清除率:候选和位置遗传决定因素
  • 批准号:
    7547757
  • 财政年份:
    2008
  • 资助金额:
    $ 13.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了