Next generation CRISPR/Cas9-RNAi mouse models for accelerated drug discovery research
用于加速药物发现研究的下一代 CRISPR/Cas9-RNAi 小鼠模型
基本信息
- 批准号:9282298
- 负责人:
- 金额:$ 65.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-04 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAllelesAnimalsBiological ModelsBreathingBreedingCRISPR/Cas technologyCancer ModelCancer-Predisposing GeneComplexDataDevelopmentDiseaseDisease modelDoxycyclineDrug TargetingES Cell LineEngineeringEvaluationGene CombinationsGene DeletionGene SilencingGene TargetingGenerationsGenesGeneticGenetic EngineeringGenetically Engineered MouseGoalsGuide RNAIn SituInjection of therapeutic agentKnock-outLeadLesionLung AdenocarcinomaLung AdenomaMaintenanceMalignant NeoplasmsMeasuresMediatingModelingMusMutagenesisMutationNon-Small-Cell Lung CarcinomaOncogenesOncogenicPathogenesisPathologyPharmacotherapyPhaseProcessProductionPublishingRNA InterferenceResearchSafetySideSmall Business Innovation Research GrantSystemTP53 geneTechniquesTechnologyTetracyclinesTherapeuticTimeToxic effectTreatment EfficacyValidationViral Vectorbaseblastocystcancer therapycohortcostcost effectivedrug discoveryembryonic stem cellfight againstflexibilitygenome editingin vivoinnovationmouse modelmutantnew therapeutic targetnext generationnovelnovel strategiesnovel therapeuticspre-clinicalpreclinical studyrecombinase-mediated cassette exchangerepairedsmall hairpin RNAsmall moleculesuccesssynergismtooltumor microenvironmentvector
项目摘要
Abstract
Significance: New approaches for rapid identification and early preclinical validation of novel therapeutic
targets are crucial to make important “go/no-go” decisions and curb the cost of developing new cancer
treatments. Genetically engineered mouse models (GEMMs) are a powerful platform to study disease initiation
and maintenance, the tumor microenvironment and the responsiveness of cancers to known or novel
therapeutics; however, the long lead times and high costs required to develop, intercross and maintain models
with various cancer predisposing gene combinations have limited their practical utility in the drug discovery
process. Recently, we have shown RNA interference (RNAi) in mice can serve as a fast alterative to gene
deletion and be exploited experimentally to silence nearly any gene target, by the expression of synthetic short
hairpin RNAs (shRNAs). Importantly, because it is reversible, gene silencing by RNAi better mimics the
dynamics of small molecule inhibition than permanent genetic knockouts. Furthermore, with the advent of new
genome editing techniques, such as CRISPR/Cas9 technology, we are able to introduce additional sensitizing
lesions to induce disease pathogenesis. In synergy with RNAi technology, complex multi-allelic ESC based
GEMMs can be generated without extensive intercrossing. Using this combination of CRISPR/Cas9 and RNAi
technologies, we are able to not only model disease pathogenesis, but also mimic drug therapy in mice, giving
us unprecedented capabilities to perform preclinical studies in vivo. Hypothesis: We hypothesize that
CRISPR/Cas9-RNAi-GEMMs of cancer can be developed rapidly using new genome editing technologies
(CRISPRs) to introduce additional sensitizing lesions and recombinase-mediated cassette exchange (RMCE)
for precise integration of tetracycline inducible shRNAs to silence specific gene targets. Preliminary data: We
have previously used CRISRP/Cas9 and RMCE to generate RNAi-GEMMs without any breeding. Specific
Aims: As a proof-of-concept, we will develop a model of lung adenocarcinoma by using the CRISPR/Cas9
system to introduce a conditional KrasG12D allele into the endogenous locus and in situ delivery of sgRNAs
targeting Trp53 which will be activated by a conditionally expressed Cas9 allele. We will further modulate
mutant Kras or Mek1/2 activity by introducing tetracycline inducible shRNAs to model therapeutic inhibition.
Finally, we will expand our flexible platform by producing validated, ‘off-the-shelf’ viral vectors carrying
combination sgRNAs targeting commonly altered genes in NSCLC. Together, these studies will define a new
paradigm and accelerate drug discovery research by creating a flexible platform for the generation of RNAi-
GEMMs that will serve as innovative research tools, guiding the development of novel and effective
therapeutics.
抽象的
意义:快速识别和早期临床前验证的新方法的新方法
目标对于做出重要的“走/不执行”决定至关重要,并遏制发展新癌症的成本
治疗。基因工程的小鼠模型(GEMM)是研究疾病启动的强大平台
和维护,肿瘤微环境以及癌症对已知或新颖的反应性
治疗;但是,发展,互变和维护模型所需的漫长的交货时间和高成本
具有各种癌症的基因组合限制了它们在药物发现中的实际实用性
过程。最近,我们在小鼠中显示了RNA干扰(RNAi)可以作为基因的快速改变
删除并通过实验探索几乎所有基因靶标的沉默,通过合成简短的表达
发夹RNA(shrnas)。重要的是,因为它是可逆的,所以RNAi的基因沉默更好地模仿
小分子抑制的动力学比永久性遗传基因敲除。此外,随着新冒险
基因组编辑技术,例如CRISPR/CAS9技术,我们能够引入其他敏感性
诱导疾病发病机理的病变。与RNAi技术协同作用,基于复杂的多行ESC
可以在不大规模间交叉的情况下生成宝石。使用CRISPR/CAS9和RNAi的组合
技术,我们不仅能够建模疾病发病机理,而且还可以模仿小鼠的药物治疗,从而给予药物治疗。
美国在体内进行临床前研究的空前能力。假设:我们假设
CRISPR/CAS9-RNAI癌症可以使用新的基因组编辑技术迅速开发
(CRISPR)引入其他敏化病变和重组酶介导的盒式磁带交换(RMCE)
为了精确整合四环素诱导的shRNA,以使特定基因靶标保持沉默。初步数据:我们
以前已经使用CRISRP/CAS9和RMCE生成RNAi-GEMM,而无需任何繁殖。具体的
目的:作为概念证明,我们将使用CRISPR/CAS9开发肺腺癌模型
系统将有条件的KRASG12D等位基因引入内源性基因座和SGRNA的原位传递
靶向TRP53,该TRP53将被有条件表达的Cas9等位基因激活。我们将进一步调制
突变的KRAS或MEK1/2活性通过引入四环素诱导的shRNA来建模治疗抑制作用。
最后,我们将通过生产经过验证的“现成”病毒向量来扩展我们的灵活平台
NSCLC中通常改变基因的SGRNA组合。这些研究将共同定义一个新的
通过创建一个灵活的平台来生成RNAi-,范式和加速药物发现研究
将作为创新研究工具的宝石,指导新颖有效的发展
疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prem Khovabutr Premsrirut其他文献
Prem Khovabutr Premsrirut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prem Khovabutr Premsrirut', 18)}}的其他基金
Preclinical Evaluation of a Novel ADAM10 Modulator to Treat ColorectalCancer
新型 ADAM10 调节剂治疗结直肠癌的临床前评估
- 批准号:
10697653 - 财政年份:2023
- 资助金额:
$ 65.66万 - 项目类别:
CRISPR/Cas-mediated development of an RNAi rat model system
CRISPR/Cas介导的RNAi大鼠模型系统的开发
- 批准号:
9908231 - 财政年份:2018
- 资助金额:
$ 65.66万 - 项目类别:
High efficiency platform for rapid RNAi rat model development
用于快速RNAi大鼠模型开发的高效平台
- 批准号:
9557373 - 财政年份:2018
- 资助金额:
$ 65.66万 - 项目类别:
CRISPR/Cas-mediated development of an RNAi rat model system
CRISPR/Cas介导的RNAi大鼠模型系统的开发
- 批准号:
10160974 - 财政年份:2018
- 资助金额:
$ 65.66万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 65.66万 - 项目类别:
Neural crest-derived pelvic ganglia and the effects of developmental deficits on lower urinary tract innervation
神经嵴衍生的盆腔神经节和发育缺陷对下尿路神经支配的影响
- 批准号:
10719065 - 财政年份:2023
- 资助金额:
$ 65.66万 - 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 65.66万 - 项目类别:
Optimization of CRISPR genome editor and its delivery strategy for C9orf72 frontotemporal dementia
C9orf72额颞叶痴呆的CRISPR基因组编辑器优化及其递送策略
- 批准号:
10746565 - 财政年份:2023
- 资助金额:
$ 65.66万 - 项目类别:
Identifying new regulators of cardiac fibrosis and inflammation using zebrafish
使用斑马鱼识别心脏纤维化和炎症的新调节因子
- 批准号:
10892436 - 财政年份:2023
- 资助金额:
$ 65.66万 - 项目类别: