Biomarker Discovery and Validation in Parkinson's Disease
帕金森病生物标志物的发现和验证
基本信息
- 批准号:9269667
- 负责人:
- 金额:$ 66.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder after
Alzheimer's disease. Although PD is associated with Lewy body formation in the substantia nigra and other
regions of the brain, the pathologic and metabolic alterations occurring during the onset and progression of PD
have not been clearly defined. Despite a critical need for a reliable diagnostic marker for PD, there is currently
no such biomarker that can be used accurately in clinical practice for establishing a definitive diagnosis of PD.
The difficulty of identifying reliable biomarkers can be attributed to the variability of clinical samples, low
abundance of proteins that are involved in PD pathogenesis and the lack of reproducibility in validating
biomarker candidates. To overcome these limitations, we propose use of a large cerebrospinal fluid (CSF)
cohort with greater statistical power for true discovery and deep proteome analysis to discover PD biomarkers
that are involved in PD pathogenesis, but are present at low abundance. In addition, multiplexed sample
analysis by isobaric tandem mass tagging (TMT) with a common reference for data normalization will ensure
robust analytical precision of quantitative proteomic data for discovery from a larger set of samples. Moreover,
additional proteomic analysis of substantia nigra will be used to select those biomarkers that show differential
expression in CSF as well as substantia nigra. These discovery platforms will use a bioinformatics approach to
select the most plausible candidates for targeted validation studies followed by an intensive validation of the
discovered biomarker candidates. To achieve these goals, we propose three aims: Specific Aim 1: To
discover proteins that are differentially expressed in patients with Parkinson's disease. We plan to carry out a
quantitative proteomic analysis of CSF and substantia nigra samples from patients with PD and from controls
by employing TMT-based multiplexing technology. With this approach, we expect to obtain a more
comprehensive coverage of a larger number of proteins quantified across the analyzed samples. Specific Aim
2: To prioritize candidates based on an integrative analysis of alterations in CSF and substantia nigra. By
integrating the expression changes in CSF and substantia nigra with a network approach that takes advantage
of the known biological pathways that have been described in PD, our approach should be able to select
reliable PD biomarker candidates for validation by targeted PRM experiments. Specific Aim 3: To validate
candidate protein biomarkers in a larger cohort using targeted parallel reaction monitoring (PRM) mass
spectrometry using CSF samples from a PD cohort at Johns Hopkins. Biomarkers that are selected by
selection algorithms based on these PRM experiments will finally be confirmed with blinded PDBP CSF
samples. Through the approaches outlined above, we expect to discover and validate reliable PD biomarkers
in a reproducible fashion.
抽象的
帕金森氏病(PD)是第二大最常见的进行性神经退行性疾病
阿尔茨海默氏病。尽管PD与黑质和其他底层中的Lewy身体形成有关
大脑的区域,PD发作和进展过程中发生的病理和代谢改变
尚未明确定义。尽管对PD的可靠诊断标记至关重要,但目前仍有
没有这种生物标志物可以在临床实践中准确使用,以确定对PD的明确诊断。
识别可靠生物标志物的困难可能归因于临床样本的变异性,低
涉及PD发病机理的蛋白质丰富和验证缺乏可重复性
生物标志物候选人。为了克服这些局限性,我们建议使用大型脑脊液(CSF)
具有更大的统计能力,可用于真正发现和深度蛋白质组分析,以发现PD生物标志物
与PD发病机理有关的,但存在于低丰度。另外,多重样品
通过等速器串联质量标记(TMT)的分析,具有通用数据归一化的参考将确保
从较大样本中发现的定量蛋白质组学数据的可靠分析精度。而且,
黑质的其他蛋白质组学分析将用于选择那些显示差异的生物标志物
CSF和底层中的表达。这些发现平台将使用生物信息学方法来
选择针对目标验证研究的最合理的候选人,然后对
发现了生物标志物候选人。为了实现这些目标,我们提出了三个目标:特定目标1:
发现在帕金森氏病患者中差异表达的蛋白质。我们计划执行
来自PD患者的CSF和质体NIGRA样品的定量蛋白质组学分析以及对照组
通过采用基于TMT的多重技术。通过这种方法,我们希望获得更多
在分析样品中量化了更多蛋白质的全面覆盖范围。具体目标
2:基于CSF和Passia Nigra的变化的综合分析来优先考虑候选人。经过
通过利用优势的网络方法整合CSF和Sucdia Nigra中的表达变化
在PD中描述的已知生物途径中,我们的方法应该能够选择
可靠的PD生物标志物候选者通过有针对性的PRM实验验证。特定目标3:验证
使用靶向平行反应监测(PRM)质量的候选蛋白生物标志物在较大的队列中
使用约翰·霍普金斯(Johns Hopkins)的PD队列中的CSF样品的光谱法。由
基于这些PRM实验的选择算法最终将通过盲目的PDBP CSF确认
样品。通过上面概述的方法,我们希望发现并验证可靠的PD生物标志物
以可重复的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Ted M. Dawson其他文献
Molecular mediating prion-like α-synuclein fibrillation from toxic PFFs to nontoxic species
分子介导从有毒 PFF 到无毒物种的类朊病毒 α-突触核蛋白纤维颤动
- DOI:
- 发表时间:20202020
- 期刊:
- 影响因子:4.7
- 作者:Longgang Jia;Yuqing Liu;Wenliang Wang;Ying Wang;Haiqing Liu;Fufeng Liu;Rong Chen;Valina L. Dawson;Ted M. Dawson;Fuping Lu;Lei Liu;Yanping Wang;Xiaobo MaoLonggang Jia;Yuqing Liu;Wenliang Wang;Ying Wang;Haiqing Liu;Fufeng Liu;Rong Chen;Valina L. Dawson;Ted M. Dawson;Fuping Lu;Lei Liu;Yanping Wang;Xiaobo Mao
- 通讯作者:Xiaobo MaoXiaobo Mao
Molecular Mediation of Prion-like α-Synuclein Fibrillation from Toxic PFFs to Nontoxic Species
类朊病毒 α-突触核蛋白纤维化从有毒 PFF 到无毒物种的分子介导
- DOI:10.1021/acsabm.0c0068410.1021/acsabm.0c00684
- 发表时间:20202020
- 期刊:
- 影响因子:4.7
- 作者:Longgang Jia;Yuqing Liu;Wenliang Wang;Ying Wang;Haiqing Liu;Fufeng Liu;Rong Chen;Valina L. Dawson;Ted M. Dawson;Fuping Lu;Lei Liu;Yanping Wang;Xiaobo MaoLonggang Jia;Yuqing Liu;Wenliang Wang;Ying Wang;Haiqing Liu;Fufeng Liu;Rong Chen;Valina L. Dawson;Ted M. Dawson;Fuping Lu;Lei Liu;Yanping Wang;Xiaobo Mao
- 通讯作者:Xiaobo MaoXiaobo Mao
L-dopa in Parkinsonism.
左旋多巴在帕金森病中的应用。
- DOI:10.1136/bmj.2.5651.20210.1136/bmj.2.5651.202
- 发表时间:19691969
- 期刊:
- 影响因子:0
- 作者:Yulan Xiong;Stewart Neifert;Senthilkumar S. Karuppagounder;Jeannette N. Stankowski;Byoung Dae Lee;Jonathan C. Grima;Guanxing Chen;H. Ko;Yunjong Lee;Debbie Swing;Lino Tessarollo;Ted M. Dawson;V. DawsonYulan Xiong;Stewart Neifert;Senthilkumar S. Karuppagounder;Jeannette N. Stankowski;Byoung Dae Lee;Jonathan C. Grima;Guanxing Chen;H. Ko;Yunjong Lee;Debbie Swing;Lino Tessarollo;Ted M. Dawson;V. Dawson
- 通讯作者:V. DawsonV. Dawson
Themed Section: Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing
主题部分:发明新疗法而不重新发明轮子:药物再利用的力量
- DOI:10.1111/jpms.1202610.1111/jpms.12026
- 发表时间:20182018
- 期刊:
- 影响因子:0.2
- 作者:Nathan A Berger;Valerie C Besson;A. Boulares;Alexander Bürkle;Alberto Chiarugi;Robert S Clark;Nicola J Curtin;Salvatore Cuzzocrea;Ted M. Dawson;V. Dawson;G. Haskó;L. Liaudet;Flavio Moroni;Pál Pacher;Peter Radermacher;A. Salzman;Solomon H. Snyder;Francisco Garcia Soriano;R. Strosznajder;Balázs Sümegi;Raymond A. Swanson;C. SzabóNathan A Berger;Valerie C Besson;A. Boulares;Alexander Bürkle;Alberto Chiarugi;Robert S Clark;Nicola J Curtin;Salvatore Cuzzocrea;Ted M. Dawson;V. Dawson;G. Haskó;L. Liaudet;Flavio Moroni;Pál Pacher;Peter Radermacher;A. Salzman;Solomon H. Snyder;Francisco Garcia Soriano;R. Strosznajder;Balázs Sümegi;Raymond A. Swanson;C. Szabó
- 通讯作者:C. SzabóC. Szabó
Pathogenesis of Parkinson's Disease
帕金森病的发病机制
- DOI:10.1016/b978-1-4160-6641-5.00010-610.1016/b978-1-4160-6641-5.00010-6
- 发表时间:20102010
- 期刊:
- 影响因子:3.1
- 作者:Amitabh Gupta;Ted M. DawsonAmitabh Gupta;Ted M. Dawson
- 通讯作者:Ted M. DawsonTed M. Dawson
共 9 条
- 1
- 2
Ted M. Dawson的其他基金
BIOMARKER DISCOVERY AND VALIDATION IN PSP
PSP 中生物标志物的发现和验证
- 批准号:97500909750090
- 财政年份:2018
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Biology of Parkin and It's Role in Parkinson's Disease
帕金生物学及其在帕金森病中的作用
- 批准号:88828458882845
- 财政年份:2014
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Biology of Parkin and Its Role in Parkinson's Disease
帕金生物学及其在帕金森病中的作用
- 批准号:85405198540519
- 财政年份:2012
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
cell Function & Pathophysiology Project
细胞功能
- 批准号:82940958294095
- 财政年份:2012
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
- 批准号:91164799116479
- 财政年份:2012
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
- 批准号:91438059143805
- 财政年份:2012
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
- 批准号:87405778740577
- 财政年份:2012
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
- 批准号:84722918472291
- 财政年份:2012
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
- 批准号:85543948554394
- 财政年份:2012
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:1046225710462257
- 财政年份:2023
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:1061097510610975
- 财政年份:2023
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:1071363710713637
- 财政年份:2023
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:1060390210603902
- 财政年份:2023
- 资助金额:$ 66.04万$ 66.04万
- 项目类别:
The predicative values of vascular and metabolic disorders for risk of incident mild cognitive impairment and dementia
血管和代谢紊乱对发生轻度认知障碍和痴呆风险的预测价值
- 批准号:1066199610661996
- 财政年份:2023
- 资助金额:$ 66.04万$ 66.04万
- 项目类别: