Nitric Oxide and Bone Homeostasis in Patients with Argininosuccinate Lyase Deficiency
精氨基琥珀酸裂解酶缺乏症患者的一氧化氮和骨稳态
基本信息
- 批准号:9329788
- 负责人:
- 金额:$ 40.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlpha CellAmmoniaAncillary StudyArchitectureArginineArgininosuccinate lyase deficiencyBiologyBone DiseasesCardiovascular DiseasesCaveolinsCell LineageCell modelCellsCitrullineClinical ResearchCoculture TechniquesComplexCouplingDataDefectDietary NitriteDiseaseDual-Energy X-Ray AbsorptiometryEnteralEnzymesEquilibriumExhibitsFibroblastsFosteringGeneticGenetic ModelsGenotypeGoalsHeat-Shock Proteins 90Hereditary DiseaseHomeostasisHumanHuman GeneticsHyperammonemiaHypertensionIn VitroIndividualIntellectual functioning disabilityIntervention TrialIsotopesKnock-outModelingMusNatural HistoryNitric OxideNitric Oxide SynthaseNitrite ReductaseNitritesOsteoblastsOsteocalcinOsteoclastsOsteoporosisOutcomePathway interactionsPatientsPeripheralPharmacologyPhenotypePhysiological ProcessesPlacebo ControlProcessProductionProtein IsoformsRandomizedRare DiseasesReactionRecyclingRegulationRoleSalivarySecondary toSignal TransductionSignaling MoleculeSiteSourceSupplementationTNFSF11 geneTherapeuticTherapeutic InterventionTherapeutic StudiesTransgenic OrganismsUnited States National Institutes of HealthUreaargininosuccinate lyaseargininosuccinate synthasebasebonebone massbone metabolismbone turnoverdensitydesigndietary nitrateenzyme substrateextracellularin vivoinduced pluripotent stem cellinsightneurocognitive testosteoblast differentiationosteoclastogenesisresponsetooltranslational studytreatment effecturea cycle
项目摘要
Project Summary
Nitric oxide (NO), a ubiquitous signaling molecule, is important for most physiological
processes including bone homeostasis. However, extensive in vitro and in vivo studies that have
assessed the role of NO in bone biology have often yielded contrasting results. This is at least in part
due to the fact that pharmacologic inhibition of nitric oxide synthases (NOS) or genetic models of
NOS deficiency are limited by the redundancies of the NOS isoforms and cannot address the cell-
autonomous roles of NO. Argininosuccinate lyase (ASL), is a urea cycle enzyme is not only required
for the de novo synthesis of arginine, the substrate for NOS, but also to maintain the structural
integrity of a NO-synthesis complex containing NOS, argininosuccinate synthase (ASS1), the arginine
transporter CAT-1, and HSP90. Loss of ASL leads to non-redundant and cell-autonomous loss of
NOS-dependent NO production and thus ASL deficiency (ASLD) is a human genetic disorder of NO
production.
The overall goals of this proposal are to study the role of NO in bone turnover, density, and
architecture in a human model of NO deficiency and to understand the mechanistic basis by which
NO affects bone metabolism. By leveraging an ongoing trial in this rare genetic disorder, we will
address these specific questions: 1) Do patients with ASLD have abnormalities in bone turnover and
bone mass and does NOS-independent NO supplementation affect these endpoints? 2) Do patient-
derived induced pluripotent stem cells (iPSC) show differentiation defects along the osteoblastic
lineage and how does this impact osteoclastic differentiation? 3) Do osteoblasts derived from patient-
iPSC exhibit dysregulation of NO production due to dominance of a caveolin-dependent negative
regulatory NOS complex?
These studies could have a significant impact on the basic understanding of bone biology and
foster translational studies in utilizing NOS-independent NO supplementation as a therapeutic
intervention in the more common disorders like osteoporosis.
项目概要
一氧化氮 (NO) 是一种普遍存在的信号分子,对于大多数生理学都很重要
过程,包括骨稳态。然而,广泛的体外和体内研究表明
评估 NO 在骨生物学中的作用常常会产生相反的结果。这至少是部分
由于一氧化氮合酶(NOS)的药理学抑制或遗传模型
NOS 缺陷受到 NOS 异构体冗余的限制,不能解决细胞-
NO 的自主角色。精氨基琥珀酸裂解酶(ASL),是尿素循环不仅需要的酶
用于从头合成精氨酸(NOS 的底物),同时也维持结构
含有 NOS、精氨酸琥珀酸合酶 (ASS1)、精氨酸的 NO 合成复合物的完整性
转运蛋白 CAT-1 和 HSP90。 ASL 的丧失会导致非冗余和细胞自主的丧失
NOS 依赖性 NO 产生,因此 ASL 缺陷 (ASLD) 是一种人类 NO 遗传性疾病
生产。
该提案的总体目标是研究 NO 在骨转换、密度和骨质疏松中的作用。
人类一氧化氮缺乏模型中的结构,并了解其机制基础
NO影响骨代谢。通过利用这种罕见遗传疾病正在进行的试验,我们将
解决这些具体问题:1) ASLD 患者是否存在骨转换异常?
骨量以及不依赖 NOS 的 NO 补充剂是否会影响这些终点? 2)做耐心-
衍生的诱导多能干细胞 (iPSC) 显示沿成骨细胞的分化缺陷
谱系以及这如何影响破骨细胞分化? 3) 成骨细胞是否来自患者-
由于小窝蛋白依赖性阴性占主导地位,iPSC 表现出 NO 产生失调
监管NOS复合体?
这些研究可能会对骨生物学和骨生物学的基本理解产生重大影响。
促进利用不依赖 NOS 的 NO 补充剂作为治疗方法的转化研究
干预更常见的疾病,如骨质疏松症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Lee其他文献
Brendan Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan Lee', 18)}}的其他基金
Regulation of Skeletal progenitor cells in Osteogenesis Imperfecta
成骨不全中骨骼祖细胞的调节
- 批准号:
10528208 - 财政年份:2022
- 资助金额:
$ 40.3万 - 项目类别:
Regulation of Skeletal progenitor cells in Osteogenesis Imperfecta
成骨不全中骨骼祖细胞的调节
- 批准号:
10665057 - 财政年份:2022
- 资助金额:
$ 40.3万 - 项目类别:
ALL OF US EVENINGS WITH GENETICS RESEARCH EDUCATION PROGRAM
我们所有的晚间遗传学研究教育计划
- 批准号:
10307410 - 财政年份:2021
- 资助金额:
$ 40.3万 - 项目类别:
ALL OF US EVENINGS WITH GENETICS RESEARCH EDUCATION PROGRAM
我们所有的晚间遗传学研究教育计划
- 批准号:
10663584 - 财政年份:2021
- 资助金额:
$ 40.3万 - 项目类别:
WNT1 Function in Stem Cells in Osteogenesis Imperfecta and Craniofacial-Skeletal Tissues
WNT1 在成骨不全和颅面骨骼组织干细胞中的功能
- 批准号:
10316864 - 财政年份:2021
- 资助金额:
$ 40.3万 - 项目类别:
ALL OF US EVENINGS WITH GENETICS RESEARCH EDUCATION PROGRAM
我们所有的晚间遗传学研究教育计划
- 批准号:
10804507 - 财政年份:2021
- 资助金额:
$ 40.3万 - 项目类别:
WNT1 Function in Stem Cells in Osteogenesis Imperfecta and Craniofacial-Skeletal Tissues
WNT1 在成骨不全和颅面骨骼组织干细胞中的功能
- 批准号:
10684863 - 财政年份:2021
- 资助金额:
$ 40.3万 - 项目类别:
Nitric Oxide and Bone Homeostasis in Patients with Argininosuccinate Lyase Deficiency
精氨基琥珀酸裂解酶缺乏症患者的一氧化氮和骨稳态
- 批准号:
9896758 - 财政年份:2017
- 资助金额:
$ 40.3万 - 项目类别:
BRITTLE BONE DISORDERS CONSORTIUM OF THE RARE DISEASE CLINICAL RESEARCH NETWORK
罕见疾病临床研究网络脆性骨疾病联盟
- 批准号:
10392597 - 财政年份:2014
- 资助金额:
$ 40.3万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 40.3万 - 项目类别:
TET2 as a novel epigenetic regulator for uterine function and fertility
TET2 作为子宫功能和生育力的新型表观遗传调节因子
- 批准号:
10725828 - 财政年份:2023
- 资助金额:
$ 40.3万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 40.3万 - 项目类别:
Targeting Dystroglycanopathies using Pluripotent-derived Myogenic Progenitors
使用多能源性肌源性祖细胞靶向肌营养不良症
- 批准号:
10561375 - 财政年份:2023
- 资助金额:
$ 40.3万 - 项目类别:
Defining mechanisms of metabolic-epigenetic crosstalk that drive glioma initiation
定义驱动神经胶质瘤发生的代谢-表观遗传串扰机制
- 批准号:
10581192 - 财政年份:2023
- 资助金额:
$ 40.3万 - 项目类别: