Regulation of mitochondrial metabolism by lysine acylation
赖氨酸酰化调节线粒体代谢
基本信息
- 批准号:9304197
- 负责人:
- 金额:$ 39.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationActive SitesAcyl CoA DehydrogenasesAcylationAddressAffectBindingBinding ProteinsBiological AssayBloodCardiolipinsCarnitine O-PalmitoyltransferaseChronic DiseaseCitric Acid CycleComplexDefectDevelopmentDiabetes MellitusDiagnosisDimensionsDiseaseElectron TransportElectrophoresisEnergy MetabolismEnsureEnzymesEtiologyFatty AcidsFunctional disorderFundingFutureGenesGeneticGoalsGrantHeart DiseasesHereditary DiseaseHumanIn VitroInborn Errors of MetabolismInborn Genetic DiseasesIndividualInner mitochondrial membraneKineticsKnockout MiceKnowledgeLipid BindingLiverLong-Chain-Acyl-CoA DehydrogenaseLysineMacromolecular ComplexesMalignant NeoplasmsManipulative TherapiesMass Spectrum AnalysisMeasuresMembraneMembrane ProteinsMetabolicMethodsMitochondriaModificationMolecular ModelsMolecular WeightMouse ProteinMuscle functionMutagenesisMyocardiumObesityOrganPathway interactionsPatientsPharmacotherapyPlayPolicePost-Translational Protein ProcessingProcessProteinsRecombinantsRegulationResearchRespiratory ChainRoleSirtuinsSite-Directed MutagenesisTestingTherapeuticWorkacyl-CoA dehydrogenasedeacylationenzyme activityfatty acid metabolismfatty acid oxidationgene replacementheart functionimprovedliver functionmembrane assemblymitochondrial dysfunctionmitochondrial metabolismmolecular modelingmortalitymouse modelnovelnovel therapeuticsoperationprotein complex
项目摘要
PROJECT ABSTRACT
Fatty acid oxidation (FAO) is a critical energy producing pathway in heart, muscle, and liver, among other
organs. Inborn errors in genes of the FAO pathway are associated with dysfunction in these organs and a high
rate of mortality. Additionally, disruptions in FAO are seen in polygenic diseases such as obesity, diabetes, and
cancer. With advances in mass spectrometry profiling of blood metabolites, FAO defects can be readily
diagnosed. However, despite 30 years of intensive study, treatment options for modulating FAO in human
patients remain limited and ineffective. Knowledge gaps regarding the regulation of FAO enzymes and the
functional organization of the FAO pathway within the greater landscape of mitochondrial energy metabolism
have limited the development of new therapies. In the previous funding period of this grant, we established
reversible lysine post-translational modifications (acetylation, succinylation) as regulators of FAO. We showed
that sirtuin enzymes, which deacylate target lysines and restore them to the native state, are important players
in maximizing function of the FAO pathway. In the present proposal we hypothesize that lysine acylation
regulates FAO enzyme activity, localization to the inner mitochondrial membrane, and the assembly of higher-
order metabolic complexes between FAO proteins and the respiratory chain. In Specific Aim 1, we will employ
in vitro methods that we pioneered in the previous funding period to identify sirtuin-targeted lysines on the
membrane-associated FAO enzymes carnitine palmitoyltransferase-2 (CPT2), mitochondrial trifunctional
protein (TFP), and acyl-CoA dehydrogenase-9 (ACAD9). We will perform mutagenesis studies to determine
the functional role of each of the sirtuin-targeted lysine residues. In Specific Aim 2 we will investigate physical
and functional interactions between the three mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5) and the inner
mitochondrial membrane. We hypothesize that the sirtuins police the inner mitochondrial membrane in order to
facilitate assembly and operation of higher-order metabolic complexes such as those formed between FAO
and the electron transport chain. Finally, Specific Aim 3 will evaluate the effects of lysine acylation on these
higher-order complexes using a combination of mouse models and protein complexes assembled in vitro.
Understanding the role of the sirtuins in regulating FAO and metabolic supercomplexes will lay the ground
work for developing new therapies that manipulate mitochondrial function in human patients with inborn errors
of metabolism, as well as those with chronic diseases such as obesity, diabetes, and cancer.
项目摘要
脂肪酸氧化 (FAO) 是心脏、肌肉和肝脏等体内重要的能量产生途径
器官。 FAO 途径基因的先天性错误与这些器官的功能障碍和高
死亡率。此外,肥胖、糖尿病等多基因疾病也造成了粮农组织的破坏。
癌症。随着血液代谢物质谱分析的进步,FAO 缺陷可以很容易地被识别出来。
确诊。然而,尽管经过30年的深入研究,调节人类FAO的治疗方案仍然存在。
患者仍然有限且无效。关于粮农组织酶的监管和
线粒体能量代谢大格局中FAO途径的功能组织
限制了新疗法的开发。在本次赠款的上一个资助期间,我们建立了
可逆的赖氨酸翻译后修饰(乙酰化、琥珀酰化)作为FAO的调节剂。我们展示了
Sirtuin 酶可以使目标赖氨酸脱酰并将其恢复到天然状态,是重要的参与者
最大限度地发挥粮农组织途径的功能。在本提案中,我们假设赖氨酸酰化
调节FAO酶活性、线粒体内膜定位以及高级组装
排列FAO蛋白质和呼吸链之间的代谢复合物。在具体目标 1 中,我们将采用
我们在上一个资助期首创的体外方法,用于识别沉默调节蛋白上的靶向赖氨酸
膜相关的FAO酶肉毒碱棕榈酰转移酶-2 (CPT2),线粒体三功能
蛋白(TFP)和酰基辅酶A脱氢酶9(ACAD9)。我们将进行诱变研究以确定
每个针对 Sirtuin 的赖氨酸残基的功能作用。在具体目标 2 中,我们将研究物理
以及三种线粒体 Sirtuins(SIRT3、SIRT4 和 SIRT5)与内部结构之间的功能相互作用
线粒体膜。我们假设去乙酰化酶负责调控线粒体内膜,以便
促进高阶代谢复合体的组装和运行,例如粮农组织之间形成的代谢复合体
和电子传输链。最后,具体目标 3 将评估赖氨酸酰化对这些的影响
使用小鼠模型和体外组装的蛋白质复合物的组合来构建高阶复合物。
了解sirtuins在调节FAO和代谢超级复合物中的作用将为我们奠定基础
致力于开发操纵先天性缺陷人类患者线粒体功能的新疗法
新陈代谢障碍,以及患有肥胖、糖尿病和癌症等慢性疾病的人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC S GOETZMAN其他文献
ERIC S GOETZMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC S GOETZMAN', 18)}}的其他基金
Optimizing medium-chain lipids for the treatment of long-chain fatty acid oxidation disorders
优化中链脂质用于治疗长链脂肪酸氧化紊乱
- 批准号:
10372915 - 财政年份:2021
- 资助金额:
$ 39.53万 - 项目类别:
Optimizing medium-chain lipids for the treatment of long-chain fatty acid oxidation disorders
优化中链脂质用于治疗长链脂肪酸氧化紊乱
- 批准号:
10093512 - 财政年份:2021
- 资助金额:
$ 39.53万 - 项目类别:
Optimizing medium-chain lipids for the treatment of long-chain fatty acid oxidation disorders
优化中链脂质用于治疗长链脂肪酸氧化紊乱
- 批准号:
10570196 - 财政年份:2021
- 资助金额:
$ 39.53万 - 项目类别:
Regulation of Peroxisomal Metabolism by Lysine Acylation
赖氨酸酰化对过氧化物酶体代谢的调节
- 批准号:
10206781 - 财政年份:2011
- 资助金额:
$ 39.53万 - 项目类别:
Regulation of mitochondrial metabolism by lysine acetylation
赖氨酸乙酰化调节线粒体代谢
- 批准号:
8280418 - 财政年份:2011
- 资助金额:
$ 39.53万 - 项目类别:
Regulation of mitochondrial metabolism by lysine acylation
赖氨酸酰化调节线粒体代谢
- 批准号:
9171739 - 财政年份:2011
- 资助金额:
$ 39.53万 - 项目类别:
Regulation of mitochondrial metabolism by lysine acetylation
赖氨酸乙酰化调节线粒体代谢
- 批准号:
8489291 - 财政年份:2011
- 资助金额:
$ 39.53万 - 项目类别:
Regulation of mitochondrial metabolism by lysine acetylation
赖氨酸乙酰化调节线粒体代谢
- 批准号:
8113569 - 财政年份:2011
- 资助金额:
$ 39.53万 - 项目类别:
Regulation of Peroxisomal Metabolism by Lysine Acylation
赖氨酸酰化对过氧化物酶体代谢的调节
- 批准号:
10624781 - 财政年份:2011
- 资助金额:
$ 39.53万 - 项目类别:
Regulation of mitochondrial metabolism by lysine acetylation
赖氨酸乙酰化调节线粒体代谢
- 批准号:
8849897 - 财政年份:2011
- 资助金额:
$ 39.53万 - 项目类别:
相似海外基金
Regulation of mitochondrial metabolism by lysine acylation
赖氨酸酰化调节线粒体代谢
- 批准号:
9171739 - 财政年份:2011
- 资助金额:
$ 39.53万 - 项目类别:
X-Ray Raman and Vibrational Mossbauer of Metalloproteins
金属蛋白的 X 射线拉曼和振动穆斯堡尔
- 批准号:
6623398 - 财政年份:2002
- 资助金额:
$ 39.53万 - 项目类别:
X-Ray Raman and Vibrational Mossbauer of Metalloproteins
金属蛋白的 X 射线拉曼和振动穆斯堡尔
- 批准号:
6874836 - 财政年份:2002
- 资助金额:
$ 39.53万 - 项目类别:
X-Ray Raman and Vibrational Mossbauer of Metalloproteins
金属蛋白的 X 射线拉曼和振动穆斯堡尔
- 批准号:
6465349 - 财政年份:2002
- 资助金额:
$ 39.53万 - 项目类别: