Phagosomal Ion Channels as Therapeutic Targets
吞噬体离子通道作为治疗靶点
基本信息
- 批准号:9213389
- 负责人:
- 金额:$ 49.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-09 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlveolarAlveolar MacrophagesAnimal Disease ModelsAntibioticsAntigen PresentationApoptosisApoptoticAsthmaAutomobile DrivingBacteriaBacterial InfectionsBiologicalBiological AssayCarrier ProteinsCationsCell membraneCell physiologyCellsCellular biologyChargeChloride ChannelsChronicChronic DiseaseChronic Obstructive Airway DiseaseClinicalCommunicable DiseasesCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDataDevelopmentDiagnosticDiseaseDivalent CationsDrug TargetingElementsEngineeringEnvironmentEventG-substrateGTP-Binding Protein alpha Subunits, GsGoalsHomeostasisHumanImmuneInfectionInfectious Lung DisorderInflammationIngestionInnate Immune ResponseInvadedInvestigationIon ChannelIon TransportIonsKnowledgeLungLung diseasesMediatingMembraneMembrane PotentialsMethodologyMicrobial Drug ResistanceMolecularMonitorMononuclearMonovalent CationsMovementOrganellesOrganismPathologyPathway interactionsPhagocytesPhagosomesPharmacologyPopulationProcessProtein translocationProteomeProton-Translocating ATPasesRecruitment ActivityRegulationReportingResistance developmentResolutionSamplingSecretory VesiclesSentinelSeriesSignal PathwaySignal TransductionSignal Transduction PathwaySignaling MoleculeTimeTuberculosisVesicleantimicrobialbactericidecombatcombinatorialconvictdesigndriving forceexperimental studyfightinggranulocyteimprovedkillingsmacrophagemicrobialmicrobicidemutantnew therapeutic targetnovelpathogenprotein functionprotein transportpublic health relevancereceptorresponseroscovitinescreeningshunt pathwaysmall moleculespatiotemporaltherapeutic targettooltraffickinguptakevacuolar H+-ATPase
项目摘要
DESCRIPTION (provided by applicant): Mononuclear phagocytes orchestrate the innate immune response through the combinatorial interplay between the phagocytic uptake and killing of bacterial invaders, clearance of apoptotic cells, antigen presentation, and secretion of vesicle
bound signaling molecules to recruit help in the clearance of infection. Central to each of these functions is the activation of ion channels and transporter proteins that drive function in intracellular compartments. Chloride channels as well as proton translocating ATPases prime the phagosomal compartment for effective bactericidal activity, and secretory vesicles for mobilization and release. Dynamic changes in intraphagosomal pH, Cl- content, and membrane potential are essential to the development of an optimal bactericidal phagosomal lumen. The driving force for changes in ionic content in the small intraphagosomal volume is relatively unknown and likely to be highly dynamic. This proposal will explore the interdependence of phagosomal pH and the identity, regulation, and activation of ion channels present in the phagosomal membrane. Ion channel activity and the resultant changes in phagosomal content are prime determinants of the antimicrobial milieu within the phagosome and, therefore, are prime candidates for new therapeutic targets. We will explore unique regulatory signal transduction pathways to modulate ion channel trafficking/expressing in the phagosome to optimize killing of ingested organisms. The goal of the experiments proposed in this application is the optimization of dynamic functional profiles for monitoring changes in the ionic milieu of th macrophage phagosome during formation and maturation, defining mechanistically the molecular components contributing to the process. These proposed studies will address the question of whether monovalent and divalent cation flux can replace non-functional Cl- channels in driving bactericidal activity; and if so, how the appropriate channels can be recruited to the phagosome. We will determine the spatiotemporal regulation of the ionic movements and the transporter elements which can fine tune and maintain the microbicidal environment. In toto, these studies will provide both methodology and a template for the exploration of novel mechanisms which might resolve inflammation in a host-directed manner in a diversity of pulmonary diseases including tuberculosis, chronic pulmonary obstructive disease (COPD), cystic fibrosis (CF) and asthma. They also will provide a roadmap that could be helpful for the study of other intracellular organelles in a wide range of cell biological contexts and disease states.
描述(由适用提供):单核吞噬细胞通过吞噬摄取和杀死细菌入侵者的吞噬剂之间的组合相互作用来协调先天的免疫响应
结合信号分子以募集感染的帮助。这些功能中的每一个的中心是驱动在细胞内隔室中功能的离子通道和转运蛋白的激活。氯化物通道以及质子易位ATPases为有效杀菌活性的吞噬体室和用于动员和释放的秘密蔬菜。吞噬体内pH,CL-含量和膜电位的动态变化对于开发最佳细菌吞噬体腔是必不可少的。小吞咽体体积中离子含量变化的驱动力相对尚不清楚,并且可能是高度动态的。该建议将探讨吞噬体pH的相互依赖性以及吞噬膜中存在的离子通道的身份,调控和激活。离子通道活性和吞噬体含量的最终变化是吞噬体内抗菌环境的主要决定者,因此是新治疗靶标的主要候选者。我们将探索独特的调节信号传输途径,以调节吞噬体中的离子通道运输/表达以优化摄入生物的杀死。在本应用中提出的实验的目的是优化动态功能曲线,以监视形成和成熟过程中巨噬细胞吞噬体离子环境变化的变化,从而在机械上定义了有助于该过程的分子成分。这些提出的研究将解决一个问题,即单价和二价阳离子通量是否可以替代驱动细菌活性的非功能性CL通道。如果是这样,可以将适当的渠道招募到吞噬体。我们将确定可以对微生物环境微调和维持微生物环境的离子运动和转运蛋白元件的空间时间调节。在TOTO中,这些研究将提供方法和模板,以探索新型机制,这些机制可能会以宿主指导的方式以多种肺部疾病来解决炎症,包括结核病,慢性肺阻塞性疾病(COPD),囊性纤维化(CF)和哮喘。他们还将提供一个路线图,这可能有助于研究在各种细胞生物学环境和疾病状态下其他细胞内细胞器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEBORAH J. NELSON其他文献
DEBORAH J. NELSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEBORAH J. NELSON', 18)}}的其他基金
Nanodelivery of functional proteins to phagosomal membranes
将功能蛋白纳米递送至吞噬体膜
- 批准号:
9901551 - 财政年份:2015
- 资助金额:
$ 49.91万 - 项目类别:
Nanodelivery of functional proteins to phagosomal membranes
将功能蛋白纳米递送至吞噬体膜
- 批准号:
10115786 - 财政年份:2015
- 资助金额:
$ 49.91万 - 项目类别:
Nanodelivery of functional proteins to phagosomal membranes
将功能蛋白纳米递送至吞噬体膜
- 批准号:
10365947 - 财政年份:2015
- 资助金额:
$ 49.91万 - 项目类别:
Role of Ion Channel in Mononuclear Phagocyte Activation
离子通道在单核吞噬细胞激活中的作用
- 批准号:
7912041 - 财政年份:2009
- 资助金额:
$ 49.91万 - 项目类别:
Alternate CI-secretory pathways in cystic fibrosis
囊性纤维化中的替代 CI 分泌途径
- 批准号:
6517779 - 财政年份:2001
- 资助金额:
$ 49.91万 - 项目类别:
相似国自然基金
螺旋层状结构的矿化纤维素纳米晶材料的仿生构建及其促牙槽骨组织再生的机制研究
- 批准号:82301152
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
牙周膜细胞通过CXCL1-CXCR2轴调控巨噬细胞极化在正畸牙槽骨改建中的作用研究
- 批准号:82301115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长效抑炎修复材料通过诱导巨噬细胞极化促进牙槽骨再生研究
- 批准号:32301129
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Sparcl1调控Myh11+干细胞促进牙槽骨修复再生的机制研究
- 批准号:82370945
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
三维预血管化磷酸钙骨水泥牙槽骨组织工程支架的构建及三维共培养成血管相关机制的研究
- 批准号:82301117
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Macrophage metabolism in diabetes and tuberculosis comorbidity
糖尿病和结核病合并症中的巨噬细胞代谢
- 批准号:
10645801 - 财政年份:2023
- 资助金额:
$ 49.91万 - 项目类别:
Modulation of epigenetic programming of tissue resident macrophage lineages to impact HIV-1 infection, maintenance, and persistence.
调节组织驻留巨噬细胞谱系的表观遗传编程以影响 HIV-1 感染、维持和持久性。
- 批准号:
10675934 - 财政年份:2023
- 资助金额:
$ 49.91万 - 项目类别:
Combinatorial cytokine-coated macrophages for targeted immunomodulation in acute lung injury
组合细胞因子包被的巨噬细胞用于急性肺损伤的靶向免疫调节
- 批准号:
10648387 - 财政年份:2023
- 资助金额:
$ 49.91万 - 项目类别:
The role of pathogen-experienced macrophage subsets in mediating lung immunity and heterologous protection
经历病原体的巨噬细胞亚群在介导肺免疫和异源保护中的作用
- 批准号:
10753773 - 财政年份:2023
- 资助金额:
$ 49.91万 - 项目类别:
LOX-1 as a protective countermeasure in response to lung infection
LOX-1 作为应对肺部感染的保护性对策
- 批准号:
10677924 - 财政年份:2023
- 资助金额:
$ 49.91万 - 项目类别: