Spatiotemporal control of large neuronal networks using high dimensional optimization
使用高维优化对大型神经元网络进行时空控制
基本信息
- 批准号:9356504
- 负责人:
- 金额:$ 23.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsArchitectureBRAIN initiativeBedsBehaviorBenchmarkingBrainBrain regionClinicClinicalCodeCommunitiesComplementComplexComputer softwareDeep Brain StimulationDevelopmentEngineeringFutureGoalsGrowthHumanIndividualLightingLinkMathematicsMeasurementMeasuresMethodologyMethodsModelingModernizationMotivationMusNatureNeuronsNeurosciencesNoiseOutcomeOutputParkinson DiseasePathway interactionsPatternPhysiologic pulsePlayPopulationPropertyResearchRodentScientistSensorySourceStereotypingStructureStructure-Activity RelationshipSystemSystems AnalysisTechniquesTechnologyTestingTimeUncertaintyVibrissaeblindbrain cellbrain machine interfacecell typecomputational neurosciencecontrol theorydesigndynamic systemelectrical microstimulationengineering designexperienceexperimental studyhigh dimensionalityimprovedin vivoinnovationinsightinstrumentationmembermusiciannervous system disorderneural circuitneural modelneural patterningneural prosthesisneural stimulationneurophysiologyneuroregulationopen sourceoptogeneticsresponsesomatosensoryspatiotemporaltheoriestime use
项目摘要
Project Summary
The long terms goal of this project is to enable the control of large networks in the brain using neurostimulation
technologies, a key focus of the BRAIN initiative. These technologies, including optogenetics, are developing
at unprecedented rates and, consequently, are allowing scientists to make increasingly specific extrinsic
perturbations to the activity in neural circuits. However, the nature of these perturbations remains largely
limited so that the stimulated neuronal population is activated or deactivated en masse. As scientists seek to
uncover the finer mechanisms of brain function, methods will be needed that allow more complex
spatiotemporal activity patterns – neural trajectories – to be induced in these networks. The immense scale
and interconnectedness of networks in the brain make this problem highly nontrivial. One may liken this
problem to a musician on stage attempting to elicit a specific, unique response from each member of their
audience individually, while playing to the group as a whole. To better understand these challenges and
attempt to surpass them, our proposal introduces early concepts at the intersection of neuroscience and
control theory, the mathematical study of how to optimally “steer” complex systems subject to their dynamics,
possible constraints, and an objective function that measures differences between the desired and induced
trajectories.
Our specific research aims are grounded in our team's interdisciplinary experience at the interface of
dynamical systems, control theory and neuroscience. In Aim 1, we will study how the architecture and
dynamics of networks in the brain enable control with respect to natural inputs, i.e., excitation through sensory
pathways. In other words, we seek insights into how brain networks control themselves, towards better
designing extrinsic stimulation. In Aim 2, we will develop a new toolkit, adapted from modern optimal control
engineering, for designing neurostimulation input waveforms that are capable of creating high-dimensional
trajectories (e.g., patterns of spikes) in large neuronal networks. In support of Aims 1 and 2, we will develop an
innovative benchmark model containing structural and dynamical features pervasive in many salient neuronal
networks. Finally, in Aim 3, we will perform in vivo experiments in which we will deploy our theoretical
innovations to induce high-dimensional neuronal trajectories in a mouse somatosensory network using
optogenetics.
The proposed research will yield tangible outcomes in the form of new neurostimulation design
methodologies and a benchmark control model that will be disseminated to the broader neuroscience
community. Further, our theoretical developments are an important complement to continued growth in
stimulation technology and cellular manipulation methods, facilitating a more complete approach to uncovering
the mechanisms of the human brain.
项目摘要
该项目的长期目标是使用神经刺激来控制大脑中的大型网络
技术,大脑计划的重点。这些技术,包括光遗传学,正在开发
以前所未有的速度,因此允许科学家制作越来越具体的外部外部
对神经回路活动的扰动。但是,这些扰动的性质在很大程度上仍然是
有限,使刺激的神经元种群被激活或失活。作为科学家寻求
发现脑功能的更精细的机制,需要进行更复杂的方法
时空活动模式 - 神经轨迹 - 将在这些网络中诱导。巨大的规模
大脑中网络的相互联系使这个问题高度不平凡。一个人可能喜欢这个
舞台上的音乐家的问题,试图引起每个成员的特定,独特的回应
观众单独参加整个小组。更好地了解这些挑战,并
试图超越它们,我们的建议在神经科学和
控制理论,即如何最佳“转向”复杂系统的数学研究,以其动态为准,
可能的限制和一个目标函数,可以衡量所需和诱导之间的差异
轨迹。
我们的具体研究目的是基于团队的跨学科经验
动态系统,控制理论和神经科学。在AIM 1中,我们将研究建筑和如何
大脑中网络的动力学能够控制自然输入,即通过感觉兴奋
途径。换句话说,我们寻求有关大脑网络如何控制自己的见解
设计外部刺激。在AIM 2中,我们将开发一个新的工具包,该工具包适用于现代最佳控制
工程,用于设计能够创建高维的神经刺激输入波形
大型神经元网络中的轨迹(例如,尖峰模式)。为了支持目标1和2,我们将开发一个
在许多显着神经元中包含结构和动态特征的创新基准模型
网络。最后,在AIM 3中,我们将进行体内实验,我们将在其中部署我们的理论
使用鼠标体感网络中诱导高维神经元轨迹的创新
光遗传学。
拟议的研究将以新的神经刺激设计形式产生切实的结果
方法和基准控制模型将被传播到更广泛的神经科学
社区。此外,我们的理论发展是持续增长的重要完成
刺激技术和细胞操纵方法,支持一种更完整的方法
人脑的机制。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fundamental Limits of Forced Asynchronous Spiking with Integrate and Fire Dynamics.
使用 Integrate 和 Fire Dynamics 强制异步尖峰的基本限制。
- DOI:10.1186/s13408-017-0053-5
- 发表时间:2017
- 期刊:
- 影响因子:2.3
- 作者:Nandi,Anirban;Schättler,Heinz;Ritt,JasonT;Ching,ShiNung
- 通讯作者:Ching,ShiNung
Learning-based Approaches for Controlling Neural Spiking.
基于学习的控制神经尖峰的方法。
- DOI:10.23919/acc.2018.8431158
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Liu,Sensen;Sock,NoahM;Ching,ShiNung
- 通讯作者:Ching,ShiNung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ShiNung Ching其他文献
ShiNung Ching的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ShiNung Ching', 18)}}的其他基金
SCH: Tracking Individual Brain State Trajectories: Methods and Applications in Precision Neurocritical Care
SCH:跟踪个体大脑状态轨迹:精准神经重症监护的方法和应用
- 批准号:
10674922 - 财政年份:2022
- 资助金额:
$ 23.82万 - 项目类别:
SCH: Tracking Individual Brain State Trajectories: Methods and Applications in Precision Neurocritical Care
SCH:跟踪个体大脑状态轨迹:精准神经重症监护的方法和应用
- 批准号:
10599608 - 财政年份:2022
- 资助金额:
$ 23.82万 - 项目类别:
Disambiguating coma etiologies by assessing the lability of EEG dynamics
通过评估脑电图动态的不稳定性来消除昏迷病因
- 批准号:
9321999 - 财政年份:2016
- 资助金额:
$ 23.82万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
P1: Sources and Mechanisms of Sequential Activity
P1:顺序活动的来源和机制
- 批准号:
10705963 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别:
Pre-motor neural circuits enable versatile and sequential limb movements
前运动神经回路可实现多功能且连续的肢体运动
- 批准号:
10721086 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别:
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
- 批准号:
10723802 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别:
A multi-modal, brain-wide atlas of astrocyte diversity across developmental stages and model species
跨发育阶段和模型物种的星形胶质细胞多样性的多模式、全脑图谱
- 批准号:
10677211 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别:
P2: Geometry of Neural Representations and Dynamics
P2:神经表征和动力学的几何
- 批准号:
10705964 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别: