Structural parameters of flagellar rod and filament assembly in Bacillus subtilis
枯草芽孢杆菌鞭毛杆和丝组装的结构参数
基本信息
- 批准号:9327547
- 负责人:
- 金额:$ 5.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAntibiotic TherapyAreaBacillus (bacterium)Bacillus subtilisBacteriaBacterial ProteinsBasal PlateBiochemicalBiological AssayBiological ProcessBiomedical EngineeringBiotechnologyCell membraneCell physiologyCellsCellular biologyClinicalComplexDataDiseaseElectron MicroscopyEnsureEnvironmentEscherichia coliFilamentFlagellaGeneticGenetic TechniquesGenetic TranscriptionGram-Positive BacteriaGrowthIndividualInvestigationLabelLengthMaintenanceMeasuresMediatingMembraneMethodsMicroscopyModelingMolecularMorphologyMotorMovementOrganismPathogenesisPathogenicityPeptidoglycanProteinsRegulationReportingResearchSalmonella typhimuriumStaining methodStainsStructureSystemTechniquesThickTimeTranslationsVariantVirulenceVirulence Factorscell motilityexperimental studyextracellularfitnessforward geneticsinsightkinetosomeknowledge basemutantnanomachinenovelperiplasmpolymerizationpreventrepairedretinal rods
项目摘要
PROJECT SUMMARY
Bacteria assemble large extracellular complexes called nanomachines to differentially interact with their
environment. Nanomachines enact specific functions, including substrate secretion, cell motility, and
pathogenesis. The regulation and structural composition of bacterial protein nanomachines is inherently
complex. One such nanomachine, the flagellar apparatus, is critical for bacterial motility, and its assembly is
highly ordered. Many regulatory systems are in place to ensure that proper assembly of the flagella occurs both
spatially and temporally. Many studies investigate the composition of the flagellar structure as well as how the
host regulates transcription and translation of its various components. However, less is known regarding the
systems in place controlling accurate assembly of the flagellum.
One of the major components of the flagellum is the extracellular filament, which is responsible for
generating thrust to mobilize the cell. The majority of studies focusing on filament assembly use the Gram-
negative organisms Salmonella typhimurium and Escherichia coli. Investigations suggest that these two closely
related organisms maintain distinct mechanisms regulating filament length, as well as repair. Whether the
precise regulation of filament length is necessary for efficient motility across all species is unknown. Using the
genetically tractable, Gram-positive model bacterium Bacillus subtilis, we propose to determine the mechanisms
employed by this organism to control filament growth and length, as well as whether filament repair occurs.
Additionally, mechanisms regulating the length of the flagellar rod spanning from the membrane-bound
flagellar motor to the extracellular filament in B. subtilis is unknown. Four proteins putatively make up the B.
subtilis rod, but their order of assembly is currently unknown. Further, the rod must precisely traverse a large
distance in both Gram-negative (periplasm) and Gram-positive (peptidoglycan) organisms to initiate assembly
of the flagellar filament. Thus, the cell must regulate rod length to accurately span these depths. Although
studies in the Gram-negative S. typhimurium show rod length is determined via interaction with the outer
membrane, a lack of an outer membrane in Gram-positive organisms indicates a different mechanism is in place.
We will identify the structural composition of the rod and determine the components controlling rod length.
The aims of this proposal and experiments suggested focus on the structural organization of the flagellar
rod and filament, specifically to: (i) assess the cell mechanisms controlling flagellar filament length and
elongation, and (ii) define the components that make up the rod and determine the regulation of its length and
assembly. We will address the proposed experiments using genetic, biochemical, and cell biology techniques.
Overall, these aims intend to promote our understanding of bacterial nanomachine regulation and their
contributions to cell physiology and fitness.
项目概要
细菌组装称为纳米机器的大型细胞外复合物,以与细菌进行不同的相互作用
环境。纳米机器具有特定的功能,包括底物分泌、细胞运动和
发病。细菌蛋白纳米机器的调控和结构组成本质上是
复杂的。鞭毛装置就是这样一种纳米机器,它对于细菌的运动至关重要,其组装过程是
高度有序。许多监管系统都已到位,以确保鞭毛的正确组装发生在
空间上和时间上。许多研究调查了鞭毛结构的组成以及如何
宿主调节其各种成分的转录和翻译。然而,关于
控制鞭毛精确组装的系统。
鞭毛的主要成分之一是细胞外丝,它负责
产生推力来动员细胞。大多数关注灯丝组装的研究都使用 Gram-
阴性菌为鼠伤寒沙门氏菌和大肠杆菌。调查显示,两人关系密切
相关生物体维持着调节丝长度和修复的独特机制。无论是
精确调节丝长度对于所有物种的有效运动是否必要尚不清楚。使用
遗传上易于处理的革兰氏阳性模型细菌枯草芽孢杆菌,我们建议确定其机制
该生物体利用它来控制细丝的生长和长度,以及是否发生细丝修复。
此外,调节从膜结合的鞭毛杆长度的机制
枯草芽孢杆菌中鞭毛对细胞外丝的运动尚不清楚。据推测,B 蛋白由四种蛋白质组成。
枯草杆菌棒,但它们的组装顺序目前未知。此外,杆必须精确地穿过一个大的
革兰氏阴性(周质)和革兰氏阳性(肽聚糖)生物体中启动组装的距离
鞭毛丝。因此,细胞必须调节杆的长度以准确地跨越这些深度。虽然
对革兰氏阴性鼠伤寒沙门氏菌的研究表明,杆状长度是通过与外部相互作用来确定的。
膜,革兰氏阳性生物体缺乏外膜表明存在不同的机制。
我们将确定杆的结构组成并确定控制杆长度的部件。
该提案和实验的目的建议重点关注鞭毛的结构组织
杆和丝,特别是:(i)评估控制鞭毛丝长度的细胞机制和
伸长率,以及 (ii) 定义构成杆的组件并确定其长度和长度的调节
集会。我们将使用遗传、生化和细胞生物学技术来解决拟议的实验。
总的来说,这些目标旨在促进我们对细菌纳米机器调控及其作用的理解
对细胞生理学和健康的贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Michael Burrage其他文献
Andrew Michael Burrage的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a model of Gonococcal conjunctivitis for vaccine evaluations
开发用于疫苗评估的淋菌性结膜炎模型
- 批准号:
10740430 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
A T cell STAT3-BATF axis regulates intestinal gamma delta T cell homeostasis and disease
T 细胞 STAT3-BATF 轴调节肠道 γ δ T 细胞稳态和疾病
- 批准号:
10647114 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
Airway Prevotella enhance innate immune-mediated protection against lung infection
气道普雷沃氏菌增强先天免疫介导的肺部感染保护
- 批准号:
10561450 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
Genetic basis for persistence of Borrelia burgdorferi
伯氏疏螺旋体持续存在的遗传基础
- 批准号:
10737678 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
ARRAY: A novel polymeric mesh for prophylactic antibiotic protection of cardiac implantable electronic devices
ARRAY:一种新型聚合物网,用于心脏植入电子设备的预防性抗生素保护
- 批准号:
10600803 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别: