Role of Src Kinase in Mechanically-Induced Bone Formation
Src 激酶在机械诱导骨形成中的作用
基本信息
- 批准号:9174915
- 负责人:
- 金额:$ 51.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AllelesAntibody TherapyBindingBone DensityBone ResorptionBotoxCell Culture TechniquesCell NucleusCellsClinicalConceptionsCpG IslandsCytoplasmDNADNA MethylationDNA-Binding ProteinsDefectDissectionEpigenetic ProcessExerciseFluorescence Resonance Energy TransferFractureGene TargetingGenesGenetic RecombinationGoalsHealthHumanIn VitroIntegrinsKnockout MiceLiquid substanceLoxP-flanked alleleMechanical StimulationMechanicsMediatingMembraneMethylationMicroscopyMolecularMovementMultiprotein ComplexesMusOsteoblastsOsteoclastsOsteocytesOsteogenesisPathway interactionsPharmacologyPhase III Clinical TrialsPhenotypePhosphotransferasesPlayPopulationPredispositionProcessProlineProtein Binding DomainProtein Tyrosine KinaseReactionReagentReportingResearchResistanceRiskRoleSignal PathwaySignal TransductionSkeletonStimulusTNFSF11 geneTail SuspensionTamoxifenTherapeuticTimeTranslatingVisualWorkarmbonebone cellbone lossbone massbone qualitybone strengthcell typedentin matrix protein 1epigenetic regulationexperimental studyfluorescence lifetime imaginggene productimprovedin vivoinhibitor/antagonistlong bonemechanical loadmechanotransductionnovelnovel strategiesosteogenicpreventpromoterresponseshear stressskeletalsrc-Family Kinases
项目摘要
Project summary: We seek to understand the molecular mechanisms that direct bone formation and
resorption in response to mechanical loading. Pharmacologic manipulation of these mechanotransduction
(MTD) signaling processes in bone cells has therapeutic potential. We propose a novel strategy that
investigates signaling mechanisms that suppress the stimulatory effects of loading (rather than focusing
on signaling pathways that stimulate new bone formation). The fundamental goal is to manipulate MTD
pathways so that even modest levels of exercise can have outsized anabolic effects if mechanisms that
inhibit load-induced bone formation are pharmacologically suppressed. Osteocytes (OCY), the most
abundant cell type in bone, coordinate the response of bone to mechanical load. We propose that the
tyrosine kinase Src functions in OCY as a novel suppressor of load-induced bone formation. Global Src
null mice have high bone mass (HBM). This is due in part to Src-dependent defects in osteoclast-
mediated bone resorption. However, we risk missing an important role that tyrosine kinases may play in
the anabolic arm of skeletal MTD if we attribute the HBM phenotype of Src KO mice entirely to an
osteoclast defect in bone resorption. We suggest there is an additional underappreciated role for Src in
the osteoblast/osteocyte (OB/OCY) population that inhibits mechanically-induced anabolic signals.
Specifically, we propose that upon activation by mechanical stimuli, Src dissociates from integrins
(membrane mechanosensors) and translocates to the nucleus as part of a multi-protein complex with
Proline-rich Kinase-2 (Pyk2) and the methylated DNA binding protein Methyl-CpG Binding Domain
Protein-2 (MBD2), to regulate epigenetics of key bone genes. Thus, OCY may utilize a SrcPyk2-MBD2
“mechanosome” to promote or suppress anabolic or anti-catabolic bone genes by altering promoter-
associated CpG islands. We propose to experimentally dissect the molecular mechanisms through which
Src inhibits bone formation using in vivo and in vitro approaches with the long term goal of better
understanding the clinical and translational potential of Src inhibitors to enhance bone density and fracture
susceptibility. Three aims are proposed: Aim 1 will determine the effect of targeted Src deletion from
osteocytes on basal and load-induced bone formation and on disuse-induced bone loss in mice. Aim 2 will
determine the role of Src in epigenetic regulation of mechanically sensitive bone genes. Aim 3 will
determine the molecular interactions of Src in the cytoplasm and nucleus of osteoblasts and osteocytes
subjected to fluid shear stress in vitro using FRET-FLIM microscopy.
项目摘要:我们试图了解指导骨形成和的分子机制
响应机械负荷的回应。这些机械转导的药理操作
(MTD)骨细胞中的信号传导过程具有治疗潜力。我们提出了一种新颖的策略
研究抑制负载刺激作用的信号传导机制(而不是聚焦)
在刺激新骨形成的信号通路上)。基本目标是操纵MTD
途径,即使是适度的运动水平也会产生代谢作用,如果
抑制负荷诱导的骨形成被药物抑制。骨细胞(OCY),最多
丰富的细胞类型在骨骼中,协调骨头对机械负荷的响应。我们建议
酪氨酸激酶SRC在OCY中起作用,是负荷诱导的骨形成的新型抑制剂。全球SRC
空小鼠的骨骼质量高(HBM)。这部分归因于破骨细胞中的SRC依赖性缺陷
介导的骨骼分辨率。但是,我们冒着失去酪氨酸激酶可能发挥的重要作用的风险
如果我们将SRC KO小鼠的HBM表型完全归因于骨骼MTD的合成代谢组
骨骼分辨率的破骨细胞缺陷。我们建议SRC在
抑制机械诱导的合成代谢信号的成骨细胞/骨细胞(OB/OCY)种群。
具体而言,我们建议在通过机械刺激激活后,SRC从整合素分离出来
(膜机械传感器)并将其易位到核,作为多蛋白质复合物的一部分
富含脯氨酸的激酶-2(PYK2)和甲基化的DNA结合蛋白甲基-CPG结合结构域
蛋白-2(MBD2),用于调节关键骨基因的表观遗传学。那就是OCY可以使用SRCPYK2-MBD2
通过改变启动子 -
相关的CPG群岛。我们建议通过实验剖析分子机制
SRC使用体内和体外方法抑制骨形成,其长期目标是更好
了解SRC抑制剂增强骨密度和断裂的临床和翻译潜力
敏感性。提出了三个目的:AIM 1将确定目标SRC删除的影响
在基本和负载诱导的骨形成以及小鼠骨质损失的骨细胞上。 AIM 2意志
确定SRC在机械敏感骨基因的表观遗传调节中的作用。目标3意志
确定SRC在成骨细胞和骨细胞的细胞质和核中的分子相互作用
使用FRET-FLIM显微镜在体外经过液体剪切应力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fredrick M Pavalko其他文献
Fredrick M Pavalko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fredrick M Pavalko', 18)}}的其他基金
Mechanical Signaling through Osteoblast Focal Adhesions
通过成骨细胞局部粘连的机械信号传导
- 批准号:
8076711 - 财政年份:2007
- 资助金额:
$ 51.71万 - 项目类别:
Mechanical Signaling through Osteoblast Focal Adhesions
通过成骨细胞局部粘连的机械信号传导
- 批准号:
7622088 - 财政年份:2007
- 资助金额:
$ 51.71万 - 项目类别:
Mechanical Signaling through Osteoblast Focal Adhesions
通过成骨细胞局部粘连的机械信号传导
- 批准号:
7194424 - 财政年份:2007
- 资助金额:
$ 51.71万 - 项目类别:
Mechanical Signaling through Osteoblast Focal Adhesions
通过成骨细胞局部粘连的机械信号传导
- 批准号:
7871086 - 财政年份:2007
- 资助金额:
$ 51.71万 - 项目类别:
Mechanical Signaling through Osteoblast Focal Adhesions
通过成骨细胞局部粘连的机械信号传导
- 批准号:
7847550 - 财政年份:2007
- 资助金额:
$ 51.71万 - 项目类别:
Mechanical Signaling through Osteoblast Focal Adhesions
通过成骨细胞局部粘连的机械信号传导
- 批准号:
7431790 - 财政年份:2007
- 资助金额:
$ 51.71万 - 项目类别:
相似国自然基金
人腺病毒4型双抗体鸡尾酒疗法的开发及其结构功能基础研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
人腺病毒4型双抗体鸡尾酒疗法的开发及其结构功能基础研究
- 批准号:32170948
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
肿瘤细胞靶向性光动力疗法联合SIRPα抗体导向的TRAIL对抗“冷”肿瘤的作用及机制
- 批准号:82073362
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
新型血管调控因子ANGPTL4对肺纤维化进程的调控作用及分子机制研究
- 批准号:81900071
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
开发基于cetuximab抗体靶向工程酶A4H363A的ADEPT肿瘤靶向疗法
- 批准号:21977055
- 批准年份:2019
- 资助金额:66 万元
- 项目类别:面上项目
相似海外基金
Vitamin D and beta-amyloid signaling in hyperparathyroidism
甲状旁腺功能亢进症中的维生素 D 和 β-淀粉样蛋白信号传导
- 批准号:
10668177 - 财政年份:2023
- 资助金额:
$ 51.71万 - 项目类别:
IGHG Genes (GM Allotypes) and Anti-CMV (UL70) Antibody Responses as Prognostic Markers for Chronic Graft-Versus-Host-Disease
IGHG 基因(GM 同种型)和抗 CMV (UL70) 抗体反应作为慢性移植物抗宿主病的预后标志物
- 批准号:
10624498 - 财政年份:2023
- 资助金额:
$ 51.71万 - 项目类别:
The novel role of HLA-E restricted CD8 regulatory T cells in kidney allograft rejection
HLA-E限制性CD8调节性T细胞在肾同种异体移植排斥中的新作用
- 批准号:
10564689 - 财政年份:2023
- 资助金额:
$ 51.71万 - 项目类别:
Major Histocompatibility Complex Shapes Early Life Microbial Events to prevent Autoimmunity
主要组织相容性复合体塑造生命早期微生物事件以预防自身免疫
- 批准号:
10154318 - 财政年份:2022
- 资助金额:
$ 51.71万 - 项目类别: