Adeno-Associated Virus Gene Therapy Vectors: Molecular Interactions on Cell Entry
腺相关病毒基因治疗载体:进入细胞时的分子相互作用
基本信息
- 批准号:9277018
- 负责人:
- 金额:$ 71.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAffinityArginineBackBindingBiological ModelsCalibrationCell LineCell surfaceCellsComplexCryoelectron MicroscopyCrystallizationDNA deliveryDependovirusDevelopmentDiseaseElectron MicroscopyFeedsFoundationsGene Transduction AgentGenesGeneticGoalsHaploid CellsHemophilia AHereditary DiseaseHybridsInterventionIon ChannelLaboratoriesLigand BindingLigandsMalignant NeoplasmsMapsMediatingMethodologyMethodsModelingMolecular AnalysisMolecular ConformationMotionMultienzyme ComplexesMutagenesisNamesNuclearPharmacologic SubstancePhenotypePhospholipase A2PhosphotransferasesPolysaccharidesPredispositionProtein DynamicsProteinsPublishingRelaxationResearchResidual stateResistanceResolutionRibosomesRoentgen RaysSerotypingSmall Interfering RNASpecificityStructureTNFSF5 geneTestingUncertaintyValidationViralWorkbasecell typecrosslinkdata exchangeextracellularfeedingflexibilityimprovedinsightmethod developmentmolecular pathologymutantpublic health relevancereceptorrestraintstructural biologytargeted treatmenttraffickingtrans-Golgi Networkvirus host interaction
项目摘要
Project Description
Adeno-associated virus (AAV) is a leading gene therapy vector for delivery of DNA to correct genetic errors or
predispositions to disease. Our objective is an understanding of the virus-host interactions that mediate cell
entry. This foundation will support the widely sought goal of manipulating cell specificity, efficiently transducing
desired cells and reducing off-target side effects. This goal has motivated extensive genetic and phenotypic
characterization, which, with structure, provide an exceptional paradigm for general insights into viral entry.
Our binding and siRNA studies cast doubt on published co-receptors, motivating a gene trap screen in a
haploid cell line. The gene most frequently hit in AAV-resistant mutant cells, encoded a protein that we named
AAVR which binds with nM affinity, inhibits transduction, and is essential for all AAV serotypes and cell types
tested. We have expressed the AAV-binding domains, and will determine a structure of the complex by cryo-
electron microscopy (EM) before further characterizing the interactions through mutagenesis.
Other genes were implicated by the screen. We will determine which encoded proteins interact with AAV or
AAVR through photo-induced cross-linking, pull-down, and mass spectrometric identification of interacting
domains. These will be expressed for binding analysis, and hybrid x-ray/EM structure. The gene trap indicates
potential partners, not just at the cell surface, but during AAV's trafficking to the peri-nuclear trans Golgi
network, and which will illuminate how AAV's phospholipase A2 domain is released for endosomal escape.
EM methods, applicable to AAV, will be developed for general use. For refinement of hybrid structures, our
map-fitting optimization will incorporate parsimony restraints on model flexibility to avoid the common problem
of over-fitting at intermediate resolution. Difference map analysis will be improved, through model-based
calibration, to enhance the sensitivity with which small ligands and subtle conformational changes can be
analyzed by high resolution EM. This will be applicable to studies of AAV's attachment to extracellular glycans,
or to the binding of ligands to ion channels, ribosomes or enzyme complexes in other laboratories.
Within the MIRA framework, contributions to collaborative studies of protein dynamics will continue. These are
integrating crystal structure with NMR relaxation dispersion and residual dipolar couplings to characterize rate-
limiting milli-/micro-second protein motions in arginine kinase as it turns over. Our model system is illuminating
poorly understood general principles of intrinsic motions and conformational selection. These fundamental
questions are the primary goal, but the research also feeds back into methods development. The NMR
relaxation exchange data allows validation tests that our parsimonious model parameterization captures real
conformational changes. In summary, we will continue to work on challenging structural biology with both
fundamental and applied goals that drive the development of widely applicable methodology.
项目描述
腺相关病毒 (AAV) 是一种领先的基因治疗载体,用于传递 DNA 以纠正遗传错误或
疾病倾向。我们的目标是了解介导细胞的病毒与宿主的相互作用
入口。该基金会将支持广泛寻求的操纵细胞特异性、有效转导的目标
所需的细胞并减少脱靶副作用。这一目标激发了广泛的遗传和表型研究
表征,其结构为病毒进入的一般见解提供了一个特殊的范例。
我们的结合和 siRNA 研究对已发表的共受体提出了质疑,激发了基因陷阱筛选
单倍体细胞系。 AAV 抗性突变细胞中最常受到攻击的基因编码了一种我们命名为的蛋白质
AAVR 以 nM 亲和力结合,抑制转导,对所有 AAV 血清型和细胞类型至关重要
已测试。我们已经表达了 AAV 结合域,并将通过冷冻确定复合物的结构
电子显微镜(EM),然后通过诱变进一步表征相互作用。
其他基因也受到屏幕的影响。我们将确定哪些编码蛋白与 AAV 或
AAVR 通过光诱导交联、下拉和相互作用的质谱鉴定
域。这些将被表达用于结合分析和混合 X 射线/EM 结构。基因陷阱表明
潜在的伙伴,不仅在细胞表面,而且在 AAV 运输到核周反高尔基体的过程中
网络,这将阐明 AAV 的磷脂酶 A2 结构域如何释放以进行内体逃逸。
适用于 AAV 的 EM 方法将被开发用于通用用途。为了细化混合结构,我们的
地图拟合优化将结合模型灵活性的简约限制,以避免常见问题
中间分辨率下的过度拟合。通过基于模型的方法将改进差异图分析
校准,以提高小配体和细微构象变化的灵敏度
通过高分辨率 EM 进行分析。这将适用于 AAV 与细胞外聚糖附着的研究,
或其他实验室中配体与离子通道、核糖体或酶复合物的结合。
在 MIRA 框架内,对蛋白质动力学合作研究的贡献将继续。这些都是
将晶体结构与 NMR 弛豫色散和残余偶极耦合相结合,以表征速率
限制精氨酸激酶翻转时的毫秒/微秒蛋白质运动。我们的模型系统很有启发性
对内在运动和构象选择的一般原理知之甚少。这些基本的
问题是主要目标,但研究也反馈到方法的开发中。核磁共振
松弛交换数据允许验证测试,我们的简约模型参数化捕获真实的
构象变化。总之,我们将继续致力于具有挑战性的结构生物学
推动广泛适用的方法论发展的基本目标和应用目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL S. CHAPMAN其他文献
MICHAEL S. CHAPMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL S. CHAPMAN', 18)}}的其他基金
Adeno-Associated Virus Gene Therapy Vectors: Molecular Interactions on Cell Entry
腺相关病毒基因治疗载体:进入细胞时的分子相互作用
- 批准号:
10552417 - 财政年份:2017
- 资助金额:
$ 71.34万 - 项目类别:
Adeno-Associated Virus Gene Therapy Vectors: Molecular Interactions on Cell Entry
腺相关病毒基因治疗载体:进入细胞时的分子相互作用
- 批准号:
9789047 - 财政年份:2017
- 资助金额:
$ 71.34万 - 项目类别:
Adeno-Associated Virus Gene Therapy Vectors: Molecular Interactions on Cell Entry
腺相关病毒基因治疗载体:进入细胞时的分子相互作用
- 批准号:
10224232 - 财政年份:2017
- 资助金额:
$ 71.34万 - 项目类别:
Refinement of Macromolecular Assembly Structure using Electron Microscopy
使用电子显微镜细化大分子组装结构
- 批准号:
7418194 - 财政年份:2007
- 资助金额:
$ 71.34万 - 项目类别:
Refinement of Macromolecular Assembly Structure using Electron Microscopy
使用电子显微镜细化大分子组装结构
- 批准号:
7266556 - 财政年份:2007
- 资助金额:
$ 71.34万 - 项目类别:
Refinement of Macromolecular Assembly Structure using Electron Microscopy
使用电子显微镜细化大分子组装结构
- 批准号:
7626031 - 财政年份:2007
- 资助金额:
$ 71.34万 - 项目类别:
Functional Dynamics during Induced-fit Enzyme Turnover
诱导适应酶周转期间的功能动力学
- 批准号:
7581018 - 财政年份:2007
- 资助金额:
$ 71.34万 - 项目类别:
Functional Dynamics During Induced-fit Enzyme Turnover
诱导适应酶周转期间的功能动力学
- 批准号:
8849921 - 财政年份:2007
- 资助金额:
$ 71.34万 - 项目类别:
Refinement of Macromolecular Assembly Structure using Electron Microscopy
使用电子显微镜细化大分子组装结构
- 批准号:
7851423 - 财政年份:2007
- 资助金额:
$ 71.34万 - 项目类别:
Functional Dynamics During Induced-fit Enzyme Turnover
诱导适应酶周转期间的功能动力学
- 批准号:
8370216 - 财政年份:2007
- 资助金额:
$ 71.34万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Cellular Mechanisms of Neuroligin-4 Gene in Human Neurons
Neuroligin-4 基因在人类神经元中的细胞机制
- 批准号:
10367707 - 财政年份:2022
- 资助金额:
$ 71.34万 - 项目类别:
Cellular Mechanisms of Neuroligin-4 Gene in Human Neurons
Neuroligin-4 基因在人类神经元中的细胞机制
- 批准号:
10552576 - 财政年份:2022
- 资助金额:
$ 71.34万 - 项目类别:
Design, Synthesis, and Biology of Inhibitors of Neuronal Nitric Oxide Synthase
神经元一氧化氮合酶抑制剂的设计、合成和生物学
- 批准号:
8810598 - 财政年份:2014
- 资助金额:
$ 71.34万 - 项目类别:
Design, Synthesis, and Biology of Inhibitors of Neuronal Nitric Oxide Synthase
神经元一氧化氮合酶抑制剂的设计、合成和生物学
- 批准号:
8648049 - 财政年份:2014
- 资助金额:
$ 71.34万 - 项目类别:
Ligand-Independent Selective Modulation of Androgen Receptor Activity
雄激素受体活性的配体独立选择性调节
- 批准号:
8319654 - 财政年份:2010
- 资助金额:
$ 71.34万 - 项目类别: