Engineered viral tropism for cell-type specific manipulation of neuronal circuits
用于神经元回路的细胞类型特异性操作的工程病毒趋向性
基本信息
- 批准号:9149316
- 负责人:
- 金额:$ 37.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-24 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdverse effectsBase of the BrainBehaviorBenchmarkingBiological AssayBrainCapsid ProteinsCategoriesCell surfaceCellsCloningCognitionColorCommunitiesCorpus striatum structureDependovirusDevelopmentDiseaseElectrophysiology (science)EngineeringGenerationsGeneric DrugsGlutamatesGoalsHealthInfectionIon ChannelLightMapsMethodsMolecularMolecular ConformationMolecular ProfilingNeuronsNeurosciencesOutcomePathologyPeptidesPerformancePharmaceutical PreparationsProtein EngineeringProteomicsReagentReporterResolutionResourcesRewardsRoleSignal TransductionSliceSorting - Cell MovementSpecificitySplit GenesStimulusSurfaceSynapsesSynaptic plasticitySystemTechnologyToxinTrainingTransgenesTransgenic AnimalsTropismViralVirusWorkaddictionbrain tissuecell typecombinatorialdesigngene complementationgenetic manipulationimprovedin vivoin vivo Modelinterestknock-downneural circuitneuromechanismneuronal circuitrynoveloptogeneticspromoterreceptorreceptor expressionrelating to nervous systemresponseselective expressionsensortooltransgene expressionviral gene deliveryvoltage
项目摘要
DESCRIPTION (provided by applicant): It is a longstanding goal in neuroscience to reveal how specific cell types contribute to different neural circuits that underlie cognition, behavior, and disease pathology. Although cell types can be grouped into descriptive categories (excitatory, inhibitory, peptidergic etc.), we know there is a great combinatorial diversity of cels that differ in ion channel and receptor expression levels and fulfill discrete roles within neural circuits. Thus, to improve the resolution of neural circuit maps, to understand how the brain works on a mechanistic level, and to better understand disease pathologies there is a great need for manipulating ever more specific sets of cell in neural circuits. Genetically targeting these different subsets is difficult when delivering transgenes to many neurons (with potentially adverse effects) and relying on cell-type specific promoters for selective expression - the current state of the art. Our agenda is to fundamentally change how cell type specific genetic manipulation is achieved: Since the functional definition of a neuron - its electrophysiological response to a stimulus - is intrinsically a proteomic problem, we propose a novel viral delivery method able to deliver transgenes selectively to neurons that express, on the cell surface, a targeted set of ion channels and receptors. When using this novel method transgene expression can be driven from generic and reliable promoters or other engineered promoter systems (e.g. sensitive to light or drugs). To achieve this transformative goal of a broadly useful tool for in vvo viral gene delivery, we build on Dr. Schmidt's expertise in protein engineering using genetically encoded peptide toxins, and Dr. Thomas' expertise with in vivo models of addiction disorders. In this application we describe the development of a generalizable method for creating engineered viruses with user-selectable tropism that can target specific subsets of neuronal cell types. We furthermore propose to demonstrate utility of these engineered viruses in intact brain tissue, including optogenetically targeting - without relying on transgenic animals or specific promoters - two sets of neurons involved in reward-related synaptic plasticity. The outcome of this work will be a broadly useful and first-in-class viral delivery technology that enables the genetic manipulation of defined sets neuron types in the brain based on what surface receptors they express. This method will enable completely new ways of exploring molecular and cellular mechanism of neural activity.
描述(由适用提供):神经科学的长期目标是揭示特定细胞类型如何促进认知,行为和疾病病理学的不同神经元电路。尽管可以将细胞类型分为描述性类别(兴奋性,抑制性,肽能等),但我们知道CELS的组合多样性在离子通道和受体表达水平上有所不同,并且在神经元内扮演离散角色。为了改善神经元图的分辨率,以了解大脑在机械水平上的工作方式,并更好地了解疾病病理学,需要在神经元中操纵更具体的细胞集。在将翻译转换为许多神经元(具有潜在不利影响)并依靠细胞类型的特定启动子来选择性表达时,很难靶向这些不同的子集,这是很难在细胞表面上表达一组靶向的离子通道和受体的神经元,有选择地传递转基因。当使用这种新颖的方法转换表达时,可以从通用和可靠的启动子或其他工程启动子系统(例如对光或药物敏感)驱动。为了实现VVO病毒基因传递中广泛有用的工具的这种变革性目标,我们以施密特博士的蛋白质工程专家为基础,使用一般编码的肽毒素,以及托马斯博士在体内成瘾疾病模型中的专业知识。在本应用程序中,我们描述了一种可推广方法的开发,用于创建具有用户选择的对流主义的工程病毒,该病毒可以针对神经元细胞类型的特定子集。我们进一步建议证明这些工程病毒在完整的脑组织中的实用性,包括拟态靶向 - 不依赖转基因动物或特定启动子 - 参与奖励相关的合成可塑性的两组神经元。这项工作的结果将是一种广泛有用的一流的病毒输送技术,可以根据其表达的表面受体来实现大脑中确定的神经元类型的遗传操纵。该方法将使全新的方法探索神经活动的分子和细胞机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Schmidt其他文献
Daniel Schmidt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Schmidt', 18)}}的其他基金
Comprehensive mapping of trafficking and functional robustness in Inward Rectifier K+ channels for variant pathogenicity prediction and model-guided engineering of chemogenetic reagents
全面绘制内向整流器 K 通道中的运输和功能鲁棒性,用于化学遗传学试剂的变异致病性预测和模型引导工程
- 批准号:
10297049 - 财政年份:2021
- 资助金额:
$ 37.34万 - 项目类别:
Comprehensive mapping of trafficking and functional robustness in Inward Rectifier K+ channels for variant pathogenicity prediction and model-guided engineering of chemogenetic reagents
全面绘制内向整流器 K 通道中的运输和功能鲁棒性,用于化学遗传学试剂的变异致病性预测和模型引导工程
- 批准号:
10450046 - 财政年份:2021
- 资助金额:
$ 37.34万 - 项目类别:
Comprehensive mapping of trafficking and functional robustness in Inward Rectifier K+ channels for variant pathogenicity prediction and model-guided engineering of chemogenetic reagents
全面绘制内向整流器 K 通道中的运输和功能鲁棒性,用于化学遗传学试剂的变异致病性预测和模型引导工程
- 批准号:
10620837 - 财政年份:2021
- 资助金额:
$ 37.34万 - 项目类别:
Engineered viral tropism for cell-type specific manipulation of neuronal circuits
用于神经元回路的细胞类型特异性操作的工程病毒趋向性
- 批准号:
9034297 - 财政年份:2015
- 资助金额:
$ 37.34万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Self-management Intervention for Reducing Epilepsy Burden among Ugandans with Epilepsy
减轻乌干达癫痫患者癫痫负担的自我管理干预措施
- 批准号:
10740917 - 财政年份:2023
- 资助金额:
$ 37.34万 - 项目类别:
Engineered viral tropism for cell-type specific manipulation of neuronal circuits
用于神经元回路的细胞类型特异性操作的工程病毒趋向性
- 批准号:
9034297 - 财政年份:2015
- 资助金额:
$ 37.34万 - 项目类别: