Maximizing the delivery and efficacy of miRNA therapeutics through nanocarrier design
通过纳米载体设计最大化 miRNA 疗法的递送和功效
基本信息
- 批准号:9142584
- 负责人:
- 金额:$ 38.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibodiesBindingBiodistributionBiologicalBlood CirculationBreast Cancer ModelCell Surface ReceptorsCellsClinicalClinical TrialsDiseaseDisease ProgressionFutureGene ExpressionGene Expression RegulationGene TargetingHalf-LifeInterventionKnowledgeMediatingMessenger RNAMicroRNAsOsteoporosisOutcomeProcessProteinsRNARNA DegradationResearch PersonnelResistanceShapesSignal TransductionSiteSystemTissuesTranslational RepressionTranslationsbiological systemschemical propertydesignexperiencein vivointerestmalignant breast neoplasmnanocarriernanoparticlenucleasephysical propertyreceptortargeted agenttherapeutic miRNAtooltraffickinguptake
项目摘要
PROJECT SUMMARY/ABSTRACT
Noncoding ribonucleic acid molecules called microRNAs (miRNAs) have recently emerged as important
biological regulators that suppress the expression of target genes via messenger RNA degradation or
translational repression. Since miRNAs can regulate gene expression, there is intense interest in utilizing these
molecules as tools to halt disease progression. Unfortunately, naked miRNAs are not suitable for clinical use
due to their poor stability, limited circulation half-‐‑life, and inability to enter cells. Accordingly, researchers
have begun to incorporate miRNAs into nanocarriers to facilitate their in vivo delivery. While some progress
has been made, there is substantial room for improvement, evidenced by the fact that only a single miRNA
nanocarrier has entered clinical trials. This lack of clinical translation indicates there is an urgent need for
mechanistic studies to elucidate the underlying principles that dictate the interactions between miRNA
nanocarriers and biological systems. We aim to address this need by capitalizing on our unique expertise in
nanoparticle design, which includes experience with both miRNA nanocarriers and targeted nanoparticle
systems. More specifically, we will elucidate how the physical and chemical properties of miRNA nanocarriers
influence five specific outcomes related to the challenges associated with in vivo miRNA delivery. These
include: stability and nuclease resistance, cell uptake and intracellular trafficking, gene regulation potency,
biodistribution, and ability to halt progression of diseases including breast cancer and osteoporosis. By
studying these five outcomes, we can increase understanding of the effects of miRNA nanocarriers on the
body, as well as the effects of the body on miRNA nanocarriers. This will enable us to establish a set of design
rules that govern the interactions between miRNA nanocarriers and biological systems and which can be
applied in the de novo synthesis of miRNA nanocarriers to maximize their site-‐‑specific delivery and efficacy.
Over the next five years we will focus explicitly on studying how incorporating targeting agents into miRNA
nanocarriers influences the five aforementioned outcomes. By comparing different types of targeting agents
(e.g., antibodies or proteins) we can increase knowledge of the mechanisms of nanoparticle interactions with
cell surface receptors and the impact they have on signal transduction. We hypothesize that targeting agents
can not only promote cell binding, but also manipulate signaling cascades via receptor-‐‑mediated processes. If
this hypothesis is correct, combining miRNA delivery with targeting agent-‐‑mediated signal cascade
manipulation may have synergistic effects on diseased cells. Importantly, in the future we will expand our
studies to investigate other features of miRNA nanocarriers such as size, shape, and stiffness. This will enable
us to distinguish how the nanocarrier itself influences various biological outcomes. This important information
will enable creation of accurate design rules that will facilitate more efficient clinical translation of new miRNA
nanocarriers for disease intervention.
项目摘要/摘要
称为microRNA(miRNA)的非编码核糖核酸分子最近出现了很重要
通过信使RNA降解抑制靶基因表达的生物调节剂
翻译抑制。由于miRNA可以调节基因表达,因此对使用这些表达有密集的兴趣
分子作为停止疾病进展的工具。不幸的是,裸miRNA不适合临床使用
由于它们的稳定性不佳,循环有限的半衰期以及无法进入细胞的稳定性。根据研究人员的说法
已开始将miRNA纳入纳米载体,以促进其体内递送。而有些进步
已经制造了,有很大的改进空间,这一事实证明了只有一个mirna
纳米载体已进入临床试验。缺乏临床翻译表明迫切需要
机械研究以阐明决定miRNA之间相互作用的基本原理
纳米载体和生物系统。我们旨在通过利用我们独特的专业知识来满足这一需求
纳米颗粒设计,其中包括miRNA纳米载体和靶向纳米颗粒的经验
系统。更具体地说,我们将阐明miRNA纳米载体的物理和化学特性如何
影响与体内miRNA递送相关的挑战有关的五个特定结果。这些
包括:稳定性和核酸酶耐药性,细胞吸收和细胞内运输,基因调节效力,
生物分布以及停止包括乳腺癌和骨质疏松症在内的疾病进展的能力。经过
研究这五个结果,我们可以提高对miRNA纳米载体对
身体以及身体对miRNA纳米载体的影响。这将使我们能够建立一套设计
控制miRNA纳米载体与生物系统之间相互作用的规则,可以是
应用于miRNA纳米载体的从头合成,以最大程度地提高其特定地点的交付和效率。
在接下来的五年中
纳米载体会影响五个早期的信息结果。通过比较不同类型的靶向剂
(例如,抗体或蛋白质)我们可以增加对纳米颗粒相互作用机制的了解
细胞表面受体及其对信号转导的影响。我们假设靶向代理
不仅可以促进细胞结合,还可以通过受体介导的过程来操纵信号级联。如果
该假设是正确的,将miRNA递送与靶向剂 - 介导的信号级联相结合
操纵可能对解散的细胞具有协同作用。重要的是,将来我们将扩大我们的
研究miRNA纳米载体的其他特征,例如大小,形状和刚度。这将启用
我们区分纳米载体本身如何影响各种生物学结果。这个重要的信息
将实现精确的设计规则,从而有助于更有效的新miRNA临床翻译
疾病干预的纳米载体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily S Day其他文献
Novel Bone Marrow/HSC-Targeted, Megakaryocyte-Derived Extracellular Vesicle Delivery Modality for <em>In Vivo</em> Gene Therapy
- DOI:
10.1182/blood-2023-179450 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Laura R Goldberg;Qiuyan W Ma;Navdeep Malik;Daniel Bode;Samik Das;Will Thompson;Jenna C Harris;Joseph R Inigo;Pragati Jain;Emily S Day;David M Raiser;Sedattin S Ozturk;Eleftherios T Papoutsakis;Iain R Thompson;Jonathan N. Thon - 通讯作者:
Jonathan N. Thon
Emily S Day的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily S Day', 18)}}的其他基金
Probing nano/bio interactions to understand and overcome biological barriers limiting nanomedicine
探索纳米/生物相互作用,以了解和克服限制纳米医学的生物障碍
- 批准号:
10623828 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Multifunctional siRNA/antibody nanocarriers to treat metastatic triple-negative breast cancer
多功能siRNA/抗体纳米载体治疗转移性三阴性乳腺癌
- 批准号:
10414778 - 财政年份:2019
- 资助金额:
$ 38.18万 - 项目类别:
Multifunctional siRNA/antibody nanocarriers to treat metastatic triple-negative breast cancer
多功能siRNA/抗体纳米载体治疗转移性三阴性乳腺癌
- 批准号:
10670809 - 财政年份:2019
- 资助金额:
$ 38.18万 - 项目类别:
Maximizing the delivery and efficacy of miRNA therapeutics through nanocarrier design
通过纳米载体设计最大化 miRNA 疗法的递送和功效
- 批准号:
9488015 - 财政年份:2016
- 资助金额:
$ 38.18万 - 项目类别:
Maximizing the delivery and efficacy of miRNA therapeutics through nanocarrier design
通过纳米载体设计最大化 miRNA 疗法的递送和功效
- 批准号:
9323466 - 财政年份:2016
- 资助金额:
$ 38.18万 - 项目类别:
Maximizing the delivery and efficacy of miRNA therapeutics through nanocarrier design
通过纳米载体设计最大化 miRNA 疗法的递送和功效
- 批准号:
9925794 - 财政年份:2016
- 资助金额:
$ 38.18万 - 项目类别:
Polyvalent siRNA-Gold Nanoparticle Constructs to Eradicate Glioma
多价 siRNA-金纳米颗粒构建体可根除神经胶质瘤
- 批准号:
8397928 - 财政年份:2012
- 资助金额:
$ 38.18万 - 项目类别:
相似国自然基金
靶向CLDN18.2抗体的抗原结合特性对CAR-T抗肿瘤活性的调控机制
- 批准号:82303716
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SMAD结合蛋白HMCES在抗体多样性成熟中的功能机制探究
- 批准号:32370753
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
活化针对新冠病毒抗原受体结合域(RBD)高度保守表位的中和抗体策略研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活化针对新冠病毒抗原受体结合域(RBD)高度保守表位的中和抗体策略研究
- 批准号:82202026
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
马尔尼菲篮状菌Noc2蛋白靶向结合CD19诱导B细胞产生抗IFN-γ自身抗体的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别: